Precision Oncology: The Road Ahead
Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, advances in sequencing techniques provide an unprecedented view of the complex genetic and nongenetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating genomic and...
Gespeichert in:
Veröffentlicht in: | Trends in molecular medicine 2017-10, Vol.23 (10), p.874-898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 10 |
container_start_page | 874 |
container_title | Trends in molecular medicine |
container_volume | 23 |
creator | Senft, Daniela Leiserson, Mark D.M. Ruppin, Eytan Ronai, Ze’ev A. |
description | Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, advances in sequencing techniques provide an unprecedented view of the complex genetic and nongenetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating genomic and transcriptomic analyses for advanced precision oncology. We summarize relevant computational approaches to detect novel drivers and genetic vulnerabilities, suitable for therapeutic exploration. Clinically relevant platforms to functionally test predicted drugs/drug combinations for individual patients are reviewed. Finally, we highlight the technological advances in single cell analysis of tumor specimens. These may ultimately lead to the development of next-generation cancer drugs, capable of tackling the hurdles imposed by genetic and phenotypic heterogeneity on current anticancer therapies.
Genomics-driven cancer therapy benefits a subset of patients, although there are clear shortcomings to this approach.
Using genomics as a single ‘biomarker’ to inform therapy is insufficient to comprehensively predict efficient therapeutic approaches. By providing information about active pathways, the inclusion of transcriptomic data reveals a more comprehensive and, thus, accurate molecular profile, which likely improves the choice of therapy.
Available patient-derived functional models (e.g., organoids or patient-derived xenografts) are promising for testing multiple drugs and/or drug combinations in a clinically relevant time-frame.
Mining available data sets can allow researchers to comprehensively map the processes that drive cancer and reveal novel vulnerabilities.
Intratumor heterogeneity remains one of the biggest challenges in reaching sustained therapeutic responses to cancer treatment. Integrating additional factors (immune, metabolome, and microbiome) could pinpoint novel putative therapeutic approaches and combinational drug therapies, in an effort to overcome tumor heterogeneity. |
doi_str_mv | 10.1016/j.molmed.2017.08.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1471491417301430</els_id><sourcerecordid>1937530110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-9640b7e109978b2c29125e8330c292316fdde79b621ad6273f63e6e875f102633</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRbK1-A5HiyUvizG6yu_EglOI_KCii4G1JN5N2S5qt2bbgtzelWvXiaQbmzXszP8ZOEWIElJezeO6rORUxB1Qx6BhA7LEuJgqjJMve9nc9Jh12FMIMAFOl9CHrcK21ghS77PypIeuC83X_sba-8pOPq_7LlPrPPi_6gynlxTE7KPMq0MlX7bHX25uX4X00erx7GA5GkU2kWEaZTGCsCCHLlB5zyzPkKWkhoG25QFkWBalsLDnmheRKlFKQJK3SEoFLIXrseuu7WI3bvyzVyyavzKJx87z5MD535u-kdlMz8WuTKtQcVGtw8WXQ-PcVhaWZu2CpqvKa_CoYzIRKBSBCK022Utv4EBoqdzEIZoPXzMwWr9ngNaBNi7ddO_t94m7pm-fPD9SCWjtqTLCOakuFazkvTeHd_wmfNQOLdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937530110</pqid></control><display><type>article</type><title>Precision Oncology: The Road Ahead</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Senft, Daniela ; Leiserson, Mark D.M. ; Ruppin, Eytan ; Ronai, Ze’ev A.</creator><creatorcontrib>Senft, Daniela ; Leiserson, Mark D.M. ; Ruppin, Eytan ; Ronai, Ze’ev A.</creatorcontrib><description>Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, advances in sequencing techniques provide an unprecedented view of the complex genetic and nongenetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating genomic and transcriptomic analyses for advanced precision oncology. We summarize relevant computational approaches to detect novel drivers and genetic vulnerabilities, suitable for therapeutic exploration. Clinically relevant platforms to functionally test predicted drugs/drug combinations for individual patients are reviewed. Finally, we highlight the technological advances in single cell analysis of tumor specimens. These may ultimately lead to the development of next-generation cancer drugs, capable of tackling the hurdles imposed by genetic and phenotypic heterogeneity on current anticancer therapies.
Genomics-driven cancer therapy benefits a subset of patients, although there are clear shortcomings to this approach.
Using genomics as a single ‘biomarker’ to inform therapy is insufficient to comprehensively predict efficient therapeutic approaches. By providing information about active pathways, the inclusion of transcriptomic data reveals a more comprehensive and, thus, accurate molecular profile, which likely improves the choice of therapy.
Available patient-derived functional models (e.g., organoids or patient-derived xenografts) are promising for testing multiple drugs and/or drug combinations in a clinically relevant time-frame.
Mining available data sets can allow researchers to comprehensively map the processes that drive cancer and reveal novel vulnerabilities.
Intratumor heterogeneity remains one of the biggest challenges in reaching sustained therapeutic responses to cancer treatment. Integrating additional factors (immune, metabolome, and microbiome) could pinpoint novel putative therapeutic approaches and combinational drug therapies, in an effort to overcome tumor heterogeneity.</description><identifier>ISSN: 1471-4914</identifier><identifier>EISSN: 1471-499X</identifier><identifier>DOI: 10.1016/j.molmed.2017.08.003</identifier><identifier>PMID: 28887051</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Antineoplastic Agents - therapeutic use ; Drug Discovery - methods ; Drug Discovery - trends ; Genomics - methods ; Genomics - trends ; Humans ; Medical Oncology - methods ; Medical Oncology - trends ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Transcriptome</subject><ispartof>Trends in molecular medicine, 2017-10, Vol.23 (10), p.874-898</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-9640b7e109978b2c29125e8330c292316fdde79b621ad6273f63e6e875f102633</citedby><cites>FETCH-LOGICAL-c463t-9640b7e109978b2c29125e8330c292316fdde79b621ad6273f63e6e875f102633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1471491417301430$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28887051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Senft, Daniela</creatorcontrib><creatorcontrib>Leiserson, Mark D.M.</creatorcontrib><creatorcontrib>Ruppin, Eytan</creatorcontrib><creatorcontrib>Ronai, Ze’ev A.</creatorcontrib><title>Precision Oncology: The Road Ahead</title><title>Trends in molecular medicine</title><addtitle>Trends Mol Med</addtitle><description>Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, advances in sequencing techniques provide an unprecedented view of the complex genetic and nongenetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating genomic and transcriptomic analyses for advanced precision oncology. We summarize relevant computational approaches to detect novel drivers and genetic vulnerabilities, suitable for therapeutic exploration. Clinically relevant platforms to functionally test predicted drugs/drug combinations for individual patients are reviewed. Finally, we highlight the technological advances in single cell analysis of tumor specimens. These may ultimately lead to the development of next-generation cancer drugs, capable of tackling the hurdles imposed by genetic and phenotypic heterogeneity on current anticancer therapies.
Genomics-driven cancer therapy benefits a subset of patients, although there are clear shortcomings to this approach.
Using genomics as a single ‘biomarker’ to inform therapy is insufficient to comprehensively predict efficient therapeutic approaches. By providing information about active pathways, the inclusion of transcriptomic data reveals a more comprehensive and, thus, accurate molecular profile, which likely improves the choice of therapy.
Available patient-derived functional models (e.g., organoids or patient-derived xenografts) are promising for testing multiple drugs and/or drug combinations in a clinically relevant time-frame.
Mining available data sets can allow researchers to comprehensively map the processes that drive cancer and reveal novel vulnerabilities.
Intratumor heterogeneity remains one of the biggest challenges in reaching sustained therapeutic responses to cancer treatment. Integrating additional factors (immune, metabolome, and microbiome) could pinpoint novel putative therapeutic approaches and combinational drug therapies, in an effort to overcome tumor heterogeneity.</description><subject>Animals</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Drug Discovery - methods</subject><subject>Drug Discovery - trends</subject><subject>Genomics - methods</subject><subject>Genomics - trends</subject><subject>Humans</subject><subject>Medical Oncology - methods</subject><subject>Medical Oncology - trends</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Transcriptome</subject><issn>1471-4914</issn><issn>1471-499X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9Lw0AQxRdRbK1-A5HiyUvizG6yu_EglOI_KCii4G1JN5N2S5qt2bbgtzelWvXiaQbmzXszP8ZOEWIElJezeO6rORUxB1Qx6BhA7LEuJgqjJMve9nc9Jh12FMIMAFOl9CHrcK21ghS77PypIeuC83X_sba-8pOPq_7LlPrPPi_6gynlxTE7KPMq0MlX7bHX25uX4X00erx7GA5GkU2kWEaZTGCsCCHLlB5zyzPkKWkhoG25QFkWBalsLDnmheRKlFKQJK3SEoFLIXrseuu7WI3bvyzVyyavzKJx87z5MD535u-kdlMz8WuTKtQcVGtw8WXQ-PcVhaWZu2CpqvKa_CoYzIRKBSBCK022Utv4EBoqdzEIZoPXzMwWr9ngNaBNi7ddO_t94m7pm-fPD9SCWjtqTLCOakuFazkvTeHd_wmfNQOLdw</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Senft, Daniela</creator><creator>Leiserson, Mark D.M.</creator><creator>Ruppin, Eytan</creator><creator>Ronai, Ze’ev A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171001</creationdate><title>Precision Oncology: The Road Ahead</title><author>Senft, Daniela ; Leiserson, Mark D.M. ; Ruppin, Eytan ; Ronai, Ze’ev A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-9640b7e109978b2c29125e8330c292316fdde79b621ad6273f63e6e875f102633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Drug Discovery - methods</topic><topic>Drug Discovery - trends</topic><topic>Genomics - methods</topic><topic>Genomics - trends</topic><topic>Humans</topic><topic>Medical Oncology - methods</topic><topic>Medical Oncology - trends</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senft, Daniela</creatorcontrib><creatorcontrib>Leiserson, Mark D.M.</creatorcontrib><creatorcontrib>Ruppin, Eytan</creatorcontrib><creatorcontrib>Ronai, Ze’ev A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senft, Daniela</au><au>Leiserson, Mark D.M.</au><au>Ruppin, Eytan</au><au>Ronai, Ze’ev A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision Oncology: The Road Ahead</atitle><jtitle>Trends in molecular medicine</jtitle><addtitle>Trends Mol Med</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>23</volume><issue>10</issue><spage>874</spage><epage>898</epage><pages>874-898</pages><issn>1471-4914</issn><eissn>1471-499X</eissn><abstract>Current efforts in precision oncology largely focus on the benefit of genomics-guided therapy. Yet, advances in sequencing techniques provide an unprecedented view of the complex genetic and nongenetic heterogeneity within individual tumors. Herein, we outline the benefits of integrating genomic and transcriptomic analyses for advanced precision oncology. We summarize relevant computational approaches to detect novel drivers and genetic vulnerabilities, suitable for therapeutic exploration. Clinically relevant platforms to functionally test predicted drugs/drug combinations for individual patients are reviewed. Finally, we highlight the technological advances in single cell analysis of tumor specimens. These may ultimately lead to the development of next-generation cancer drugs, capable of tackling the hurdles imposed by genetic and phenotypic heterogeneity on current anticancer therapies.
Genomics-driven cancer therapy benefits a subset of patients, although there are clear shortcomings to this approach.
Using genomics as a single ‘biomarker’ to inform therapy is insufficient to comprehensively predict efficient therapeutic approaches. By providing information about active pathways, the inclusion of transcriptomic data reveals a more comprehensive and, thus, accurate molecular profile, which likely improves the choice of therapy.
Available patient-derived functional models (e.g., organoids or patient-derived xenografts) are promising for testing multiple drugs and/or drug combinations in a clinically relevant time-frame.
Mining available data sets can allow researchers to comprehensively map the processes that drive cancer and reveal novel vulnerabilities.
Intratumor heterogeneity remains one of the biggest challenges in reaching sustained therapeutic responses to cancer treatment. Integrating additional factors (immune, metabolome, and microbiome) could pinpoint novel putative therapeutic approaches and combinational drug therapies, in an effort to overcome tumor heterogeneity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28887051</pmid><doi>10.1016/j.molmed.2017.08.003</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-4914 |
ispartof | Trends in molecular medicine, 2017-10, Vol.23 (10), p.874-898 |
issn | 1471-4914 1471-499X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718207 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Antineoplastic Agents - therapeutic use Drug Discovery - methods Drug Discovery - trends Genomics - methods Genomics - trends Humans Medical Oncology - methods Medical Oncology - trends Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - pathology Transcriptome |
title | Precision Oncology: The Road Ahead |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20Oncology:%20The%20Road%20Ahead&rft.jtitle=Trends%20in%20molecular%20medicine&rft.au=Senft,%20Daniela&rft.date=2017-10-01&rft.volume=23&rft.issue=10&rft.spage=874&rft.epage=898&rft.pages=874-898&rft.issn=1471-4914&rft.eissn=1471-499X&rft_id=info:doi/10.1016/j.molmed.2017.08.003&rft_dat=%3Cproquest_pubme%3E1937530110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937530110&rft_id=info:pmid/28887051&rft_els_id=S1471491417301430&rfr_iscdi=true |