Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain
Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2017-12, Vol.216 (12), p.4313-4330 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4330 |
---|---|
container_issue | 12 |
container_start_page | 4313 |
container_title | The Journal of cell biology |
container_volume | 216 |
creator | Nakamuta, Shinichi Yang, Yu-Ting Wang, Chia-Lin Gallo, Nicholas B Yu, Jia-Ray Tai, Yilin Van Aelst, Linda |
description | Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. |
doi_str_mv | 10.1083/jcb.201704157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5716287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958545586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlaXbmXAjZupeU4yG0FaX1joRtcxk2balGlSkxnBf29qa1E3uYTz3cO5HADOERwiKMj1UldDDBGHFDF-APqIUZgLROEh6EOIUV4yzHrgJMYlhJBySo5BD5dQlITzPngbd6rJgm9MVvuQjaejZ55Zl7XKzY1rbRJXdh5Ua73LfJ2k1gRnupC-62B0F6IP8XtjYbK1j61TbVpKZqYKyrpTcFSrJpqz3RyA1_u7l9FjPpk-PI1uJ7mmArXpnVWs0loJhLBQJTaiqOqClTWhtSKsKguOMRUFV0lKRDHTsC4QI4hSUhoyADdb33VXrcxMp_BBNXId7EqFT-mVlX8VZxdy7j8k46jAgieDq51B8O-dia1c2ahN0yhnfBclKplglDFRJPTyH7r0XXDpvEQJjHjKtaHyLaWDjzGYeh8GQbnpTqbu5L67xF_8vmBP_5RFvgDe95Wd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982176156</pqid></control><display><type>article</type><title>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nakamuta, Shinichi ; Yang, Yu-Ting ; Wang, Chia-Lin ; Gallo, Nicholas B ; Yu, Jia-Ray ; Tai, Yilin ; Van Aelst, Linda</creator><creatorcontrib>Nakamuta, Shinichi ; Yang, Yu-Ting ; Wang, Chia-Lin ; Gallo, Nicholas B ; Yu, Jia-Ray ; Tai, Yilin ; Van Aelst, Linda</creatorcontrib><description>Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201704157</identifier><identifier>PMID: 29089377</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Actin ; Actins - genetics ; Actins - metabolism ; Animals ; Animals, Newborn ; Brain ; Cell Differentiation ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Control stability ; Embryo, Mammalian ; Forebrain ; Gene Expression Regulation, Developmental ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Interneurons ; Mice ; Microtubules - metabolism ; Microtubules - ultrastructure ; Molecules ; Morphology ; Myosin ; Myosin-Light-Chain Phosphatase - genetics ; Myosin-Light-Chain Phosphatase - metabolism ; Neuroblasts ; Neurons - metabolism ; Neurons - ultrastructure ; Olfactory bulb ; Primary Cell Culture ; Prosencephalon - cytology ; Prosencephalon - growth & development ; Prosencephalon - metabolism ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; rho GTP-Binding Proteins - genetics ; rho GTP-Binding Proteins - metabolism ; RhoA protein ; Rodents ; Signal Transduction ; Stem cell transplantation ; Stem cells ; Subventricular zone ; Translocation ; Ventricle</subject><ispartof>The Journal of cell biology, 2017-12, Vol.216 (12), p.4313-4330</ispartof><rights>2017 Nakamuta et al.</rights><rights>Copyright Rockefeller University Press Dec 2017</rights><rights>2017 Nakamuta et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</citedby><cites>FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</cites><orcidid>0000-0003-4811-8975 ; 0000-0003-1095-3246 ; 0000-0002-6929-6191 ; 0000-0002-0870-012X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29089377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamuta, Shinichi</creatorcontrib><creatorcontrib>Yang, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Chia-Lin</creatorcontrib><creatorcontrib>Gallo, Nicholas B</creatorcontrib><creatorcontrib>Yu, Jia-Ray</creatorcontrib><creatorcontrib>Tai, Yilin</creatorcontrib><creatorcontrib>Van Aelst, Linda</creatorcontrib><title>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.</description><subject>Actin</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Control stability</subject><subject>Embryo, Mammalian</subject><subject>Forebrain</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Interneurons</subject><subject>Mice</subject><subject>Microtubules - metabolism</subject><subject>Microtubules - ultrastructure</subject><subject>Molecules</subject><subject>Morphology</subject><subject>Myosin</subject><subject>Myosin-Light-Chain Phosphatase - genetics</subject><subject>Myosin-Light-Chain Phosphatase - metabolism</subject><subject>Neuroblasts</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>Olfactory bulb</subject><subject>Primary Cell Culture</subject><subject>Prosencephalon - cytology</subject><subject>Prosencephalon - growth & development</subject><subject>Prosencephalon - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>rho GTP-Binding Proteins - genetics</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>RhoA protein</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Subventricular zone</subject><subject>Translocation</subject><subject>Ventricle</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLAzEUhYMotlaXbmXAjZupeU4yG0FaX1joRtcxk2balGlSkxnBf29qa1E3uYTz3cO5HADOERwiKMj1UldDDBGHFDF-APqIUZgLROEh6EOIUV4yzHrgJMYlhJBySo5BD5dQlITzPngbd6rJgm9MVvuQjaejZ55Zl7XKzY1rbRJXdh5Ua73LfJ2k1gRnupC-62B0F6IP8XtjYbK1j61TbVpKZqYKyrpTcFSrJpqz3RyA1_u7l9FjPpk-PI1uJ7mmArXpnVWs0loJhLBQJTaiqOqClTWhtSKsKguOMRUFV0lKRDHTsC4QI4hSUhoyADdb33VXrcxMp_BBNXId7EqFT-mVlX8VZxdy7j8k46jAgieDq51B8O-dia1c2ahN0yhnfBclKplglDFRJPTyH7r0XXDpvEQJjHjKtaHyLaWDjzGYeh8GQbnpTqbu5L67xF_8vmBP_5RFvgDe95Wd</recordid><startdate>20171204</startdate><enddate>20171204</enddate><creator>Nakamuta, Shinichi</creator><creator>Yang, Yu-Ting</creator><creator>Wang, Chia-Lin</creator><creator>Gallo, Nicholas B</creator><creator>Yu, Jia-Ray</creator><creator>Tai, Yilin</creator><creator>Van Aelst, Linda</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-8975</orcidid><orcidid>https://orcid.org/0000-0003-1095-3246</orcidid><orcidid>https://orcid.org/0000-0002-6929-6191</orcidid><orcidid>https://orcid.org/0000-0002-0870-012X</orcidid></search><sort><creationdate>20171204</creationdate><title>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</title><author>Nakamuta, Shinichi ; Yang, Yu-Ting ; Wang, Chia-Lin ; Gallo, Nicholas B ; Yu, Jia-Ray ; Tai, Yilin ; Van Aelst, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Control stability</topic><topic>Embryo, Mammalian</topic><topic>Forebrain</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Interneurons</topic><topic>Mice</topic><topic>Microtubules - metabolism</topic><topic>Microtubules - ultrastructure</topic><topic>Molecules</topic><topic>Morphology</topic><topic>Myosin</topic><topic>Myosin-Light-Chain Phosphatase - genetics</topic><topic>Myosin-Light-Chain Phosphatase - metabolism</topic><topic>Neuroblasts</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>Olfactory bulb</topic><topic>Primary Cell Culture</topic><topic>Prosencephalon - cytology</topic><topic>Prosencephalon - growth & development</topic><topic>Prosencephalon - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>rho GTP-Binding Proteins - genetics</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>RhoA protein</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Subventricular zone</topic><topic>Translocation</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamuta, Shinichi</creatorcontrib><creatorcontrib>Yang, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Chia-Lin</creatorcontrib><creatorcontrib>Gallo, Nicholas B</creatorcontrib><creatorcontrib>Yu, Jia-Ray</creatorcontrib><creatorcontrib>Tai, Yilin</creatorcontrib><creatorcontrib>Van Aelst, Linda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamuta, Shinichi</au><au>Yang, Yu-Ting</au><au>Wang, Chia-Lin</au><au>Gallo, Nicholas B</au><au>Yu, Jia-Ray</au><au>Tai, Yilin</au><au>Van Aelst, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2017-12-04</date><risdate>2017</risdate><volume>216</volume><issue>12</issue><spage>4313</spage><epage>4330</epage><pages>4313-4330</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>29089377</pmid><doi>10.1083/jcb.201704157</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4811-8975</orcidid><orcidid>https://orcid.org/0000-0003-1095-3246</orcidid><orcidid>https://orcid.org/0000-0002-6929-6191</orcidid><orcidid>https://orcid.org/0000-0002-0870-012X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2017-12, Vol.216 (12), p.4313-4330 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5716287 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Actin Actins - genetics Actins - metabolism Animals Animals, Newborn Brain Cell Differentiation Cell Line, Tumor Cell migration Cell Movement Control stability Embryo, Mammalian Forebrain Gene Expression Regulation, Developmental Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism HEK293 Cells HeLa Cells Humans Interneurons Mice Microtubules - metabolism Microtubules - ultrastructure Molecules Morphology Myosin Myosin-Light-Chain Phosphatase - genetics Myosin-Light-Chain Phosphatase - metabolism Neuroblasts Neurons - metabolism Neurons - ultrastructure Olfactory bulb Primary Cell Culture Prosencephalon - cytology Prosencephalon - growth & development Prosencephalon - metabolism Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism rho GTP-Binding Proteins - genetics rho GTP-Binding Proteins - metabolism RhoA protein Rodents Signal Transduction Stem cell transplantation Stem cells Subventricular zone Translocation Ventricle |
title | Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20role%20for%20DOCK7%20in%20tangential%20migration%20of%20interneuron%20precursors%20in%20the%20postnatal%20forebrain&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Nakamuta,%20Shinichi&rft.date=2017-12-04&rft.volume=216&rft.issue=12&rft.spage=4313&rft.epage=4330&rft.pages=4313-4330&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201704157&rft_dat=%3Cproquest_pubme%3E1958545586%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982176156&rft_id=info:pmid/29089377&rfr_iscdi=true |