Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain

Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2017-12, Vol.216 (12), p.4313-4330
Hauptverfasser: Nakamuta, Shinichi, Yang, Yu-Ting, Wang, Chia-Lin, Gallo, Nicholas B, Yu, Jia-Ray, Tai, Yilin, Van Aelst, Linda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4330
container_issue 12
container_start_page 4313
container_title The Journal of cell biology
container_volume 216
creator Nakamuta, Shinichi
Yang, Yu-Ting
Wang, Chia-Lin
Gallo, Nicholas B
Yu, Jia-Ray
Tai, Yilin
Van Aelst, Linda
description Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.
doi_str_mv 10.1083/jcb.201704157
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5716287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958545586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlaXbmXAjZupeU4yG0FaX1joRtcxk2balGlSkxnBf29qa1E3uYTz3cO5HADOERwiKMj1UldDDBGHFDF-APqIUZgLROEh6EOIUV4yzHrgJMYlhJBySo5BD5dQlITzPngbd6rJgm9MVvuQjaejZ55Zl7XKzY1rbRJXdh5Ua73LfJ2k1gRnupC-62B0F6IP8XtjYbK1j61TbVpKZqYKyrpTcFSrJpqz3RyA1_u7l9FjPpk-PI1uJ7mmArXpnVWs0loJhLBQJTaiqOqClTWhtSKsKguOMRUFV0lKRDHTsC4QI4hSUhoyADdb33VXrcxMp_BBNXId7EqFT-mVlX8VZxdy7j8k46jAgieDq51B8O-dia1c2ahN0yhnfBclKplglDFRJPTyH7r0XXDpvEQJjHjKtaHyLaWDjzGYeh8GQbnpTqbu5L67xF_8vmBP_5RFvgDe95Wd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982176156</pqid></control><display><type>article</type><title>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nakamuta, Shinichi ; Yang, Yu-Ting ; Wang, Chia-Lin ; Gallo, Nicholas B ; Yu, Jia-Ray ; Tai, Yilin ; Van Aelst, Linda</creator><creatorcontrib>Nakamuta, Shinichi ; Yang, Yu-Ting ; Wang, Chia-Lin ; Gallo, Nicholas B ; Yu, Jia-Ray ; Tai, Yilin ; Van Aelst, Linda</creatorcontrib><description>Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201704157</identifier><identifier>PMID: 29089377</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Actin ; Actins - genetics ; Actins - metabolism ; Animals ; Animals, Newborn ; Brain ; Cell Differentiation ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Control stability ; Embryo, Mammalian ; Forebrain ; Gene Expression Regulation, Developmental ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Interneurons ; Mice ; Microtubules - metabolism ; Microtubules - ultrastructure ; Molecules ; Morphology ; Myosin ; Myosin-Light-Chain Phosphatase - genetics ; Myosin-Light-Chain Phosphatase - metabolism ; Neuroblasts ; Neurons - metabolism ; Neurons - ultrastructure ; Olfactory bulb ; Primary Cell Culture ; Prosencephalon - cytology ; Prosencephalon - growth &amp; development ; Prosencephalon - metabolism ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; rho GTP-Binding Proteins - genetics ; rho GTP-Binding Proteins - metabolism ; RhoA protein ; Rodents ; Signal Transduction ; Stem cell transplantation ; Stem cells ; Subventricular zone ; Translocation ; Ventricle</subject><ispartof>The Journal of cell biology, 2017-12, Vol.216 (12), p.4313-4330</ispartof><rights>2017 Nakamuta et al.</rights><rights>Copyright Rockefeller University Press Dec 2017</rights><rights>2017 Nakamuta et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</citedby><cites>FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</cites><orcidid>0000-0003-4811-8975 ; 0000-0003-1095-3246 ; 0000-0002-6929-6191 ; 0000-0002-0870-012X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29089377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamuta, Shinichi</creatorcontrib><creatorcontrib>Yang, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Chia-Lin</creatorcontrib><creatorcontrib>Gallo, Nicholas B</creatorcontrib><creatorcontrib>Yu, Jia-Ray</creatorcontrib><creatorcontrib>Tai, Yilin</creatorcontrib><creatorcontrib>Van Aelst, Linda</creatorcontrib><title>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.</description><subject>Actin</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Control stability</subject><subject>Embryo, Mammalian</subject><subject>Forebrain</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Interneurons</subject><subject>Mice</subject><subject>Microtubules - metabolism</subject><subject>Microtubules - ultrastructure</subject><subject>Molecules</subject><subject>Morphology</subject><subject>Myosin</subject><subject>Myosin-Light-Chain Phosphatase - genetics</subject><subject>Myosin-Light-Chain Phosphatase - metabolism</subject><subject>Neuroblasts</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>Olfactory bulb</subject><subject>Primary Cell Culture</subject><subject>Prosencephalon - cytology</subject><subject>Prosencephalon - growth &amp; development</subject><subject>Prosencephalon - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>rho GTP-Binding Proteins - genetics</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>RhoA protein</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Subventricular zone</subject><subject>Translocation</subject><subject>Ventricle</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLAzEUhYMotlaXbmXAjZupeU4yG0FaX1joRtcxk2balGlSkxnBf29qa1E3uYTz3cO5HADOERwiKMj1UldDDBGHFDF-APqIUZgLROEh6EOIUV4yzHrgJMYlhJBySo5BD5dQlITzPngbd6rJgm9MVvuQjaejZ55Zl7XKzY1rbRJXdh5Ua73LfJ2k1gRnupC-62B0F6IP8XtjYbK1j61TbVpKZqYKyrpTcFSrJpqz3RyA1_u7l9FjPpk-PI1uJ7mmArXpnVWs0loJhLBQJTaiqOqClTWhtSKsKguOMRUFV0lKRDHTsC4QI4hSUhoyADdb33VXrcxMp_BBNXId7EqFT-mVlX8VZxdy7j8k46jAgieDq51B8O-dia1c2ahN0yhnfBclKplglDFRJPTyH7r0XXDpvEQJjHjKtaHyLaWDjzGYeh8GQbnpTqbu5L67xF_8vmBP_5RFvgDe95Wd</recordid><startdate>20171204</startdate><enddate>20171204</enddate><creator>Nakamuta, Shinichi</creator><creator>Yang, Yu-Ting</creator><creator>Wang, Chia-Lin</creator><creator>Gallo, Nicholas B</creator><creator>Yu, Jia-Ray</creator><creator>Tai, Yilin</creator><creator>Van Aelst, Linda</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4811-8975</orcidid><orcidid>https://orcid.org/0000-0003-1095-3246</orcidid><orcidid>https://orcid.org/0000-0002-6929-6191</orcidid><orcidid>https://orcid.org/0000-0002-0870-012X</orcidid></search><sort><creationdate>20171204</creationdate><title>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</title><author>Nakamuta, Shinichi ; Yang, Yu-Ting ; Wang, Chia-Lin ; Gallo, Nicholas B ; Yu, Jia-Ray ; Tai, Yilin ; Van Aelst, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-c4db5bcca81128a92e86bf659f34fa35b967224867a2e828a6dc0f615314439e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Control stability</topic><topic>Embryo, Mammalian</topic><topic>Forebrain</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Interneurons</topic><topic>Mice</topic><topic>Microtubules - metabolism</topic><topic>Microtubules - ultrastructure</topic><topic>Molecules</topic><topic>Morphology</topic><topic>Myosin</topic><topic>Myosin-Light-Chain Phosphatase - genetics</topic><topic>Myosin-Light-Chain Phosphatase - metabolism</topic><topic>Neuroblasts</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>Olfactory bulb</topic><topic>Primary Cell Culture</topic><topic>Prosencephalon - cytology</topic><topic>Prosencephalon - growth &amp; development</topic><topic>Prosencephalon - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>rho GTP-Binding Proteins - genetics</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>RhoA protein</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Subventricular zone</topic><topic>Translocation</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamuta, Shinichi</creatorcontrib><creatorcontrib>Yang, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Chia-Lin</creatorcontrib><creatorcontrib>Gallo, Nicholas B</creatorcontrib><creatorcontrib>Yu, Jia-Ray</creatorcontrib><creatorcontrib>Tai, Yilin</creatorcontrib><creatorcontrib>Van Aelst, Linda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamuta, Shinichi</au><au>Yang, Yu-Ting</au><au>Wang, Chia-Lin</au><au>Gallo, Nicholas B</au><au>Yu, Jia-Ray</au><au>Tai, Yilin</au><au>Van Aelst, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2017-12-04</date><risdate>2017</risdate><volume>216</volume><issue>12</issue><spage>4313</spage><epage>4330</epage><pages>4313-4330</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>29089377</pmid><doi>10.1083/jcb.201704157</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4811-8975</orcidid><orcidid>https://orcid.org/0000-0003-1095-3246</orcidid><orcidid>https://orcid.org/0000-0002-6929-6191</orcidid><orcidid>https://orcid.org/0000-0002-0870-012X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2017-12, Vol.216 (12), p.4313-4330
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5716287
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Actin
Actins - genetics
Actins - metabolism
Animals
Animals, Newborn
Brain
Cell Differentiation
Cell Line, Tumor
Cell migration
Cell Movement
Control stability
Embryo, Mammalian
Forebrain
Gene Expression Regulation, Developmental
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
HEK293 Cells
HeLa Cells
Humans
Interneurons
Mice
Microtubules - metabolism
Microtubules - ultrastructure
Molecules
Morphology
Myosin
Myosin-Light-Chain Phosphatase - genetics
Myosin-Light-Chain Phosphatase - metabolism
Neuroblasts
Neurons - metabolism
Neurons - ultrastructure
Olfactory bulb
Primary Cell Culture
Prosencephalon - cytology
Prosencephalon - growth & development
Prosencephalon - metabolism
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
rho GTP-Binding Proteins - genetics
rho GTP-Binding Proteins - metabolism
RhoA protein
Rodents
Signal Transduction
Stem cell transplantation
Stem cells
Subventricular zone
Translocation
Ventricle
title Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20role%20for%20DOCK7%20in%20tangential%20migration%20of%20interneuron%20precursors%20in%20the%20postnatal%20forebrain&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Nakamuta,%20Shinichi&rft.date=2017-12-04&rft.volume=216&rft.issue=12&rft.spage=4313&rft.epage=4330&rft.pages=4313-4330&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201704157&rft_dat=%3Cproquest_pubme%3E1958545586%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982176156&rft_id=info:pmid/29089377&rfr_iscdi=true