Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex
The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical da...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2017-11, Vol.45 (20), p.12025-12038 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12038 |
---|---|
container_issue | 20 |
container_start_page | 12025 |
container_title | Nucleic acids research |
container_volume | 45 |
creator | Ahdash, Zainab Lau, Andy M Byrne, Robert Thomas Lammens, Katja Stüetzer, Alexandra Urlaub, Henning Booth, Paula J Reading, Eamonn Hopfner, Karl-Peter Politis, Argyris |
description | The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA. |
doi_str_mv | 10.1093/nar/gkx890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966234065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-544ecfd916dfa231dd350841a524b21aa97bbcde3898f4aa3fc3870f19c42fd53</originalsourceid><addsrcrecordid>eNpVkctOwzAQRS0EouWx4QOQlwgpYMdOGm-QqvKUStnA2nKccWNI7GInqP17WgoIVjOjOboz0kHohJILSgS7dCpczt-WhSA7aEhZniZc5OkuGhJGsoQSXgzQQYyvhFBOM76PBqmgXDBeDFH5CLpWzsbOamxdtPO6W9fO464GrGKEtmxW2Juv-R7COJn1YYxraKxWERLX6wbWDb6ejTG4CgeIoDvrHda-XTSwPEJ7RjURjr_rIXq5vXme3CfTp7uHyXiaaDYquiTjHLSpBM0ro1JGq4plpOBUZSkvU6qUGJWlroAVojBcKWY0K0bEUKF5aqqMHaKrbe6iL1uoNLguqEYugm1VWEmvrPy_cbaWc_8hsxHNBNkEnH0HBP_eQ-xka6OGplEOfB8lFXmeMk7yDXq-RXXwMQYwv2cokRspci1FbqWs4dO_j_2iPxbYJ26ziyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966234065</pqid></control><display><type>article</type><title>Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahdash, Zainab ; Lau, Andy M ; Byrne, Robert Thomas ; Lammens, Katja ; Stüetzer, Alexandra ; Urlaub, Henning ; Booth, Paula J ; Reading, Eamonn ; Hopfner, Karl-Peter ; Politis, Argyris</creator><creatorcontrib>Ahdash, Zainab ; Lau, Andy M ; Byrne, Robert Thomas ; Lammens, Katja ; Stüetzer, Alexandra ; Urlaub, Henning ; Booth, Paula J ; Reading, Eamonn ; Hopfner, Karl-Peter ; Politis, Argyris</creatorcontrib><description>The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkx890</identifier><identifier>PMID: 29149348</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Binding Sites - genetics ; Deoxyribonucleases - chemistry ; Deoxyribonucleases - genetics ; Deoxyribonucleases - metabolism ; DNA Breaks, Double-Stranded ; DNA Helicases - chemistry ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA Repair ; DNA, Archaeal - chemistry ; DNA, Archaeal - genetics ; DNA, Archaeal - metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Domains ; Protein Multimerization ; Structural Biology ; Sulfolobus solfataricus - enzymology ; Sulfolobus solfataricus - genetics ; Sulfolobus solfataricus - metabolism</subject><ispartof>Nucleic acids research, 2017-11, Vol.45 (20), p.12025-12038</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-544ecfd916dfa231dd350841a524b21aa97bbcde3898f4aa3fc3870f19c42fd53</citedby><cites>FETCH-LOGICAL-c378t-544ecfd916dfa231dd350841a524b21aa97bbcde3898f4aa3fc3870f19c42fd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715905/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715905/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29149348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahdash, Zainab</creatorcontrib><creatorcontrib>Lau, Andy M</creatorcontrib><creatorcontrib>Byrne, Robert Thomas</creatorcontrib><creatorcontrib>Lammens, Katja</creatorcontrib><creatorcontrib>Stüetzer, Alexandra</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Booth, Paula J</creatorcontrib><creatorcontrib>Reading, Eamonn</creatorcontrib><creatorcontrib>Hopfner, Karl-Peter</creatorcontrib><creatorcontrib>Politis, Argyris</creatorcontrib><title>Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Deoxyribonucleases - chemistry</subject><subject>Deoxyribonucleases - genetics</subject><subject>Deoxyribonucleases - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Repair</subject><subject>DNA, Archaeal - chemistry</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Archaeal - metabolism</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Structural Biology</subject><subject>Sulfolobus solfataricus - enzymology</subject><subject>Sulfolobus solfataricus - genetics</subject><subject>Sulfolobus solfataricus - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctOwzAQRS0EouWx4QOQlwgpYMdOGm-QqvKUStnA2nKccWNI7GInqP17WgoIVjOjOboz0kHohJILSgS7dCpczt-WhSA7aEhZniZc5OkuGhJGsoQSXgzQQYyvhFBOM76PBqmgXDBeDFH5CLpWzsbOamxdtPO6W9fO464GrGKEtmxW2Juv-R7COJn1YYxraKxWERLX6wbWDb6ejTG4CgeIoDvrHda-XTSwPEJ7RjURjr_rIXq5vXme3CfTp7uHyXiaaDYquiTjHLSpBM0ro1JGq4plpOBUZSkvU6qUGJWlroAVojBcKWY0K0bEUKF5aqqMHaKrbe6iL1uoNLguqEYugm1VWEmvrPy_cbaWc_8hsxHNBNkEnH0HBP_eQ-xka6OGplEOfB8lFXmeMk7yDXq-RXXwMQYwv2cokRspci1FbqWs4dO_j_2iPxbYJ26ziyQ</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Ahdash, Zainab</creator><creator>Lau, Andy M</creator><creator>Byrne, Robert Thomas</creator><creator>Lammens, Katja</creator><creator>Stüetzer, Alexandra</creator><creator>Urlaub, Henning</creator><creator>Booth, Paula J</creator><creator>Reading, Eamonn</creator><creator>Hopfner, Karl-Peter</creator><creator>Politis, Argyris</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171116</creationdate><title>Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex</title><author>Ahdash, Zainab ; Lau, Andy M ; Byrne, Robert Thomas ; Lammens, Katja ; Stüetzer, Alexandra ; Urlaub, Henning ; Booth, Paula J ; Reading, Eamonn ; Hopfner, Karl-Peter ; Politis, Argyris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-544ecfd916dfa231dd350841a524b21aa97bbcde3898f4aa3fc3870f19c42fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Deoxyribonucleases - chemistry</topic><topic>Deoxyribonucleases - genetics</topic><topic>Deoxyribonucleases - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Repair</topic><topic>DNA, Archaeal - chemistry</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Archaeal - metabolism</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Structural Biology</topic><topic>Sulfolobus solfataricus - enzymology</topic><topic>Sulfolobus solfataricus - genetics</topic><topic>Sulfolobus solfataricus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahdash, Zainab</creatorcontrib><creatorcontrib>Lau, Andy M</creatorcontrib><creatorcontrib>Byrne, Robert Thomas</creatorcontrib><creatorcontrib>Lammens, Katja</creatorcontrib><creatorcontrib>Stüetzer, Alexandra</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Booth, Paula J</creatorcontrib><creatorcontrib>Reading, Eamonn</creatorcontrib><creatorcontrib>Hopfner, Karl-Peter</creatorcontrib><creatorcontrib>Politis, Argyris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahdash, Zainab</au><au>Lau, Andy M</au><au>Byrne, Robert Thomas</au><au>Lammens, Katja</au><au>Stüetzer, Alexandra</au><au>Urlaub, Henning</au><au>Booth, Paula J</au><au>Reading, Eamonn</au><au>Hopfner, Karl-Peter</au><au>Politis, Argyris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2017-11-16</date><risdate>2017</risdate><volume>45</volume><issue>20</issue><spage>12025</spage><epage>12038</epage><pages>12025-12038</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29149348</pmid><doi>10.1093/nar/gkx890</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2017-11, Vol.45 (20), p.12025-12038 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715905 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Archaeal Proteins - chemistry Archaeal Proteins - genetics Archaeal Proteins - metabolism Binding Sites - genetics Deoxyribonucleases - chemistry Deoxyribonucleases - genetics Deoxyribonucleases - metabolism DNA Breaks, Double-Stranded DNA Helicases - chemistry DNA Helicases - genetics DNA Helicases - metabolism DNA Repair DNA, Archaeal - chemistry DNA, Archaeal - genetics DNA, Archaeal - metabolism Models, Molecular Nucleic Acid Conformation Protein Binding Protein Domains Protein Multimerization Structural Biology Sulfolobus solfataricus - enzymology Sulfolobus solfataricus - genetics Sulfolobus solfataricus - metabolism |
title | Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insight%20into%20the%20assembly%20of%20the%20HerA-NurA%20helicase-nuclease%20DNA%20end%20resection%20complex&rft.jtitle=Nucleic%20acids%20research&rft.au=Ahdash,%20Zainab&rft.date=2017-11-16&rft.volume=45&rft.issue=20&rft.spage=12025&rft.epage=12038&rft.pages=12025-12038&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkx890&rft_dat=%3Cproquest_pubme%3E1966234065%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966234065&rft_id=info:pmid/29149348&rfr_iscdi=true |