Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis

Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-11, Vol.114 (48), p.12785-12790
Hauptverfasser: Pi, Hualiang, Helmann, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12790
container_issue 48
container_start_page 12785
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Pi, Hualiang
Helmann, John D.
description Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.
doi_str_mv 10.1073/pnas.1713008114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485267</jstor_id><sourcerecordid>26485267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</originalsourceid><addsrcrecordid>eNpdkb1vFDEQxS0EIkegpgKtRJNmE48_1w1SiBKIFClFoLa8u97DJ599-AOJ_x4fFxJINcX7zdO8eQi9BXwKWNKzXTD5FCRQjAcA9gytACvoBVP4OVphTGQ_MMKO0KucNxhjxQf8Eh0RBZRSRVdI39kf1YbijO9cmOtUXAxdXLqrmvpk19WbYudubYPNDeiSzbsYsu1K7FxqqHdbV8yfrSZ_MpPzvuYu17E47_Jr9GIxPts39_MYfbu6_Hrxpb-5_Xx9cX7TT4zR0oPlXNGRUCLtwCZBrcSYGU65YLBIKgwwSeZ28sKkWQifB2VGOi6MWUGpoMfo48F3V8etnacWKRmvd8ltTfqlo3H6fyW473odf2ougUtJm8HJvUGK7SO56K3Lk_XeBBtr1qAEIxIU36MfnqCbWFNo8Ro1EJBMAGvU2YGaUsw52eXhGMB6X57el6cfy2sb7__N8MD_basB7w7AJpeYHnXBBk6EpL8BM3Cf2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982174614</pqid></control><display><type>article</type><title>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pi, Hualiang ; Helmann, John D.</creator><creatorcontrib>Pi, Hualiang ; Helmann, John D.</creatorcontrib><description>Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1713008114</identifier><identifier>PMID: 29133393</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Benzamides - metabolism ; Biological Sciences ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cells ; Citric acid ; Derepression ; Efflux ; Ferric citrate ; Ferric Compounds - metabolism ; Flavodoxin - genetics ; Flavodoxin - metabolism ; Gene Expression Regulation, Bacterial ; Genes ; Homeostasis ; Homeostasis - genetics ; Intracellular ; Iron ; Iron - metabolism ; Listeria ; Listeria monocytogenes ; Listeria monocytogenes - genetics ; Listeria monocytogenes - metabolism ; Nutrient deficiency ; Oligopeptides - biosynthesis ; Oligopeptides - genetics ; Operon ; Proteins ; Regulon ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Siderophores - biosynthesis ; Siderophores - genetics ; Transcription</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-11, Vol.114 (48), p.12785-12790</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 28, 2017</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</citedby><cites>FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</cites><orcidid>0000-0002-3832-3249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29133393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pi, Hualiang</creatorcontrib><creatorcontrib>Helmann, John D.</creatorcontrib><title>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.</description><subject>Affinity</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Benzamides - metabolism</subject><subject>Biological Sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells</subject><subject>Citric acid</subject><subject>Derepression</subject><subject>Efflux</subject><subject>Ferric citrate</subject><subject>Ferric Compounds - metabolism</subject><subject>Flavodoxin - genetics</subject><subject>Flavodoxin - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Intracellular</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Nutrient deficiency</subject><subject>Oligopeptides - biosynthesis</subject><subject>Oligopeptides - genetics</subject><subject>Operon</subject><subject>Proteins</subject><subject>Regulon</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Siderophores - biosynthesis</subject><subject>Siderophores - genetics</subject><subject>Transcription</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1vFDEQxS0EIkegpgKtRJNmE48_1w1SiBKIFClFoLa8u97DJ599-AOJ_x4fFxJINcX7zdO8eQi9BXwKWNKzXTD5FCRQjAcA9gytACvoBVP4OVphTGQ_MMKO0KucNxhjxQf8Eh0RBZRSRVdI39kf1YbijO9cmOtUXAxdXLqrmvpk19WbYudubYPNDeiSzbsYsu1K7FxqqHdbV8yfrSZ_MpPzvuYu17E47_Jr9GIxPts39_MYfbu6_Hrxpb-5_Xx9cX7TT4zR0oPlXNGRUCLtwCZBrcSYGU65YLBIKgwwSeZ28sKkWQifB2VGOi6MWUGpoMfo48F3V8etnacWKRmvd8ltTfqlo3H6fyW473odf2ougUtJm8HJvUGK7SO56K3Lk_XeBBtr1qAEIxIU36MfnqCbWFNo8Ro1EJBMAGvU2YGaUsw52eXhGMB6X57el6cfy2sb7__N8MD_basB7w7AJpeYHnXBBk6EpL8BM3Cf2w</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Pi, Hualiang</creator><creator>Helmann, John D.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3832-3249</orcidid></search><sort><creationdate>20171128</creationdate><title>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</title><author>Pi, Hualiang ; Helmann, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Benzamides - metabolism</topic><topic>Biological Sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells</topic><topic>Citric acid</topic><topic>Derepression</topic><topic>Efflux</topic><topic>Ferric citrate</topic><topic>Ferric Compounds - metabolism</topic><topic>Flavodoxin - genetics</topic><topic>Flavodoxin - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Intracellular</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Nutrient deficiency</topic><topic>Oligopeptides - biosynthesis</topic><topic>Oligopeptides - genetics</topic><topic>Operon</topic><topic>Proteins</topic><topic>Regulon</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Siderophores - biosynthesis</topic><topic>Siderophores - genetics</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pi, Hualiang</creatorcontrib><creatorcontrib>Helmann, John D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pi, Hualiang</au><au>Helmann, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>114</volume><issue>48</issue><spage>12785</spage><epage>12790</epage><pages>12785-12790</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29133393</pmid><doi>10.1073/pnas.1713008114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3832-3249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-11, Vol.114 (48), p.12785-12790
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715773
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Affinity
Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Benzamides - metabolism
Biological Sciences
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cells
Citric acid
Derepression
Efflux
Ferric citrate
Ferric Compounds - metabolism
Flavodoxin - genetics
Flavodoxin - metabolism
Gene Expression Regulation, Bacterial
Genes
Homeostasis
Homeostasis - genetics
Intracellular
Iron
Iron - metabolism
Listeria
Listeria monocytogenes
Listeria monocytogenes - genetics
Listeria monocytogenes - metabolism
Nutrient deficiency
Oligopeptides - biosynthesis
Oligopeptides - genetics
Operon
Proteins
Regulon
Repressor Proteins - genetics
Repressor Proteins - metabolism
Siderophores - biosynthesis
Siderophores - genetics
Transcription
title Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20induction%20of%20Fur-regulated%20genes%20in%20response%20to%20iron%20limitation%20in%20Bacillus%20subtilis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pi,%20Hualiang&rft.date=2017-11-28&rft.volume=114&rft.issue=48&rft.spage=12785&rft.epage=12790&rft.pages=12785-12790&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1713008114&rft_dat=%3Cjstor_pubme%3E26485267%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982174614&rft_id=info:pmid/29133393&rft_jstor_id=26485267&rfr_iscdi=true