Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis
Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-11, Vol.114 (48), p.12785-12790 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12790 |
---|---|
container_issue | 48 |
container_start_page | 12785 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Pi, Hualiang Helmann, John D. |
description | Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes. |
doi_str_mv | 10.1073/pnas.1713008114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485267</jstor_id><sourcerecordid>26485267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</originalsourceid><addsrcrecordid>eNpdkb1vFDEQxS0EIkegpgKtRJNmE48_1w1SiBKIFClFoLa8u97DJ599-AOJ_x4fFxJINcX7zdO8eQi9BXwKWNKzXTD5FCRQjAcA9gytACvoBVP4OVphTGQ_MMKO0KucNxhjxQf8Eh0RBZRSRVdI39kf1YbijO9cmOtUXAxdXLqrmvpk19WbYudubYPNDeiSzbsYsu1K7FxqqHdbV8yfrSZ_MpPzvuYu17E47_Jr9GIxPts39_MYfbu6_Hrxpb-5_Xx9cX7TT4zR0oPlXNGRUCLtwCZBrcSYGU65YLBIKgwwSeZ28sKkWQifB2VGOi6MWUGpoMfo48F3V8etnacWKRmvd8ltTfqlo3H6fyW473odf2ougUtJm8HJvUGK7SO56K3Lk_XeBBtr1qAEIxIU36MfnqCbWFNo8Ro1EJBMAGvU2YGaUsw52eXhGMB6X57el6cfy2sb7__N8MD_basB7w7AJpeYHnXBBk6EpL8BM3Cf2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982174614</pqid></control><display><type>article</type><title>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pi, Hualiang ; Helmann, John D.</creator><creatorcontrib>Pi, Hualiang ; Helmann, John D.</creatorcontrib><description>Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1713008114</identifier><identifier>PMID: 29133393</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Benzamides - metabolism ; Biological Sciences ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cells ; Citric acid ; Derepression ; Efflux ; Ferric citrate ; Ferric Compounds - metabolism ; Flavodoxin - genetics ; Flavodoxin - metabolism ; Gene Expression Regulation, Bacterial ; Genes ; Homeostasis ; Homeostasis - genetics ; Intracellular ; Iron ; Iron - metabolism ; Listeria ; Listeria monocytogenes ; Listeria monocytogenes - genetics ; Listeria monocytogenes - metabolism ; Nutrient deficiency ; Oligopeptides - biosynthesis ; Oligopeptides - genetics ; Operon ; Proteins ; Regulon ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Siderophores - biosynthesis ; Siderophores - genetics ; Transcription</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-11, Vol.114 (48), p.12785-12790</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 28, 2017</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</citedby><cites>FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</cites><orcidid>0000-0002-3832-3249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29133393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pi, Hualiang</creatorcontrib><creatorcontrib>Helmann, John D.</creatorcontrib><title>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.</description><subject>Affinity</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Benzamides - metabolism</subject><subject>Biological Sciences</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells</subject><subject>Citric acid</subject><subject>Derepression</subject><subject>Efflux</subject><subject>Ferric citrate</subject><subject>Ferric Compounds - metabolism</subject><subject>Flavodoxin - genetics</subject><subject>Flavodoxin - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Intracellular</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Listeria</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Nutrient deficiency</subject><subject>Oligopeptides - biosynthesis</subject><subject>Oligopeptides - genetics</subject><subject>Operon</subject><subject>Proteins</subject><subject>Regulon</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Siderophores - biosynthesis</subject><subject>Siderophores - genetics</subject><subject>Transcription</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1vFDEQxS0EIkegpgKtRJNmE48_1w1SiBKIFClFoLa8u97DJ599-AOJ_x4fFxJINcX7zdO8eQi9BXwKWNKzXTD5FCRQjAcA9gytACvoBVP4OVphTGQ_MMKO0KucNxhjxQf8Eh0RBZRSRVdI39kf1YbijO9cmOtUXAxdXLqrmvpk19WbYudubYPNDeiSzbsYsu1K7FxqqHdbV8yfrSZ_MpPzvuYu17E47_Jr9GIxPts39_MYfbu6_Hrxpb-5_Xx9cX7TT4zR0oPlXNGRUCLtwCZBrcSYGU65YLBIKgwwSeZ28sKkWQifB2VGOi6MWUGpoMfo48F3V8etnacWKRmvd8ltTfqlo3H6fyW473odf2ougUtJm8HJvUGK7SO56K3Lk_XeBBtr1qAEIxIU36MfnqCbWFNo8Ro1EJBMAGvU2YGaUsw52eXhGMB6X57el6cfy2sb7__N8MD_basB7w7AJpeYHnXBBk6EpL8BM3Cf2w</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Pi, Hualiang</creator><creator>Helmann, John D.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3832-3249</orcidid></search><sort><creationdate>20171128</creationdate><title>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</title><author>Pi, Hualiang ; Helmann, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-1e5593b2327e84c63e7004a535641f736a1472d393f47af25d89ab3bf44e63363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Benzamides - metabolism</topic><topic>Biological Sciences</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells</topic><topic>Citric acid</topic><topic>Derepression</topic><topic>Efflux</topic><topic>Ferric citrate</topic><topic>Ferric Compounds - metabolism</topic><topic>Flavodoxin - genetics</topic><topic>Flavodoxin - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Intracellular</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Listeria</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Nutrient deficiency</topic><topic>Oligopeptides - biosynthesis</topic><topic>Oligopeptides - genetics</topic><topic>Operon</topic><topic>Proteins</topic><topic>Regulon</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Siderophores - biosynthesis</topic><topic>Siderophores - genetics</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pi, Hualiang</creatorcontrib><creatorcontrib>Helmann, John D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pi, Hualiang</au><au>Helmann, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>114</volume><issue>48</issue><spage>12785</spage><epage>12790</epage><pages>12785-12790</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis. Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron (efeUOB), ferric citrate (fecCDEF), and petrobactin (fpbNOPQ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin (dhbACEBF) and turns on bacillibactin (feuABC) and hydroxamate siderophore (fhuBCGD) uptake systems to scavenge iron from the environment and flavodoxins (ykuNOP) to replace ferredoxins. Third, as iron levels decline further, an “iron-sparing” response (fsrA, fbpAB, and fbpC) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the “late”-induced genes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29133393</pmid><doi>10.1073/pnas.1713008114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3832-3249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-11, Vol.114 (48), p.12785-12790 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715773 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Affinity Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Benzamides - metabolism Biological Sciences Carrier Proteins - genetics Carrier Proteins - metabolism Cells Citric acid Derepression Efflux Ferric citrate Ferric Compounds - metabolism Flavodoxin - genetics Flavodoxin - metabolism Gene Expression Regulation, Bacterial Genes Homeostasis Homeostasis - genetics Intracellular Iron Iron - metabolism Listeria Listeria monocytogenes Listeria monocytogenes - genetics Listeria monocytogenes - metabolism Nutrient deficiency Oligopeptides - biosynthesis Oligopeptides - genetics Operon Proteins Regulon Repressor Proteins - genetics Repressor Proteins - metabolism Siderophores - biosynthesis Siderophores - genetics Transcription |
title | Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20induction%20of%20Fur-regulated%20genes%20in%20response%20to%20iron%20limitation%20in%20Bacillus%20subtilis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pi,%20Hualiang&rft.date=2017-11-28&rft.volume=114&rft.issue=48&rft.spage=12785&rft.epage=12790&rft.pages=12785-12790&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1713008114&rft_dat=%3Cjstor_pubme%3E26485267%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982174614&rft_id=info:pmid/29133393&rft_jstor_id=26485267&rfr_iscdi=true |