Capsize of polarization in dilute photonic crystals

We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.16593-9, Article 16593
Hauptverfasser: Gevorkian, Zhyrair, Hakhoumian, Arsen, Gasparian, Vladimir, Cuevas, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 16593
container_title Scientific reports
container_volume 7
creator Gevorkian, Zhyrair
Hakhoumian, Arsen
Gasparian, Vladimir
Cuevas, Emilio
description We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell’s equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization’s rotation can be explained by an optical splitting parameter appearing naturally in Maxwell’s equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
doi_str_mv 10.1038/s41598-017-16847-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5707359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970271136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d9420e99e7a8482ee8118ffb59a9bf97da72dbacc2b98bdbddaed8a93202559b3</originalsourceid><addsrcrecordid>eNp1kU9LwzAYh4MoTua-gAcpePFSTdJkSS6CDP_BwIueQ5qkW0bX1KQVtk9vtFOmYC5v4H3eX_LyAHCG4BWCBb-OBFHBc4hYjqacsJwfgBMMCc1xgfHh3n0EJjGuYDoUC4LEMRhhgTglDJ2AYqba6LY281XW-loFt1Wd803mmsy4uu9s1i595xunMx02sVN1PAVHVSp2sqtj8Hp_9zJ7zOfPD0-z23muCSNdbgTB0AphmeKEY2s5QryqSiqUKCvBjGLYlEprXApemtIYZQ1XosAQUyrKYgxuhty2L9fWaNt0QdWyDW6twkZ65eTvTuOWcuHfJWWQFVSkgMtdQPBvvY2dXLuobV2rxvo-SiQYxAyhYprQiz_oyvehSesNFMdTDhOFB0oHH2Ow1c9nEJSfWuSgRSYt8kuL5GnofH-Nn5FvCQkoBiCmVrOwYe_t_2M_AP93mTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970282680</pqid></control><display><type>article</type><title>Capsize of polarization in dilute photonic crystals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gevorkian, Zhyrair ; Hakhoumian, Arsen ; Gasparian, Vladimir ; Cuevas, Emilio</creator><creatorcontrib>Gevorkian, Zhyrair ; Hakhoumian, Arsen ; Gasparian, Vladimir ; Cuevas, Emilio</creatorcontrib><description>We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell’s equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization’s rotation can be explained by an optical splitting parameter appearing naturally in Maxwell’s equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-16847-8</identifier><identifier>PMID: 29185471</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1022 ; 639/766 ; Antennas ; Approximation ; Crystals ; Electric fields ; Experiments ; Humanities and Social Sciences ; Mathematical models ; multidisciplinary ; Polarization ; Receivers &amp; amplifiers ; Science ; Science (multidisciplinary) ; Splitting ; Transmitters</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.16593-9, Article 16593</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d9420e99e7a8482ee8118ffb59a9bf97da72dbacc2b98bdbddaed8a93202559b3</citedby><cites>FETCH-LOGICAL-c474t-d9420e99e7a8482ee8118ffb59a9bf97da72dbacc2b98bdbddaed8a93202559b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707359/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707359/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29185471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gevorkian, Zhyrair</creatorcontrib><creatorcontrib>Hakhoumian, Arsen</creatorcontrib><creatorcontrib>Gasparian, Vladimir</creatorcontrib><creatorcontrib>Cuevas, Emilio</creatorcontrib><title>Capsize of polarization in dilute photonic crystals</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell’s equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization’s rotation can be explained by an optical splitting parameter appearing naturally in Maxwell’s equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.</description><subject>639/624/399/1022</subject><subject>639/766</subject><subject>Antennas</subject><subject>Approximation</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Polarization</subject><subject>Receivers &amp; amplifiers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Splitting</subject><subject>Transmitters</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9LwzAYh4MoTua-gAcpePFSTdJkSS6CDP_BwIueQ5qkW0bX1KQVtk9vtFOmYC5v4H3eX_LyAHCG4BWCBb-OBFHBc4hYjqacsJwfgBMMCc1xgfHh3n0EJjGuYDoUC4LEMRhhgTglDJ2AYqba6LY281XW-loFt1Wd803mmsy4uu9s1i595xunMx02sVN1PAVHVSp2sqtj8Hp_9zJ7zOfPD0-z23muCSNdbgTB0AphmeKEY2s5QryqSiqUKCvBjGLYlEprXApemtIYZQ1XosAQUyrKYgxuhty2L9fWaNt0QdWyDW6twkZ65eTvTuOWcuHfJWWQFVSkgMtdQPBvvY2dXLuobV2rxvo-SiQYxAyhYprQiz_oyvehSesNFMdTDhOFB0oHH2Ow1c9nEJSfWuSgRSYt8kuL5GnofH-Nn5FvCQkoBiCmVrOwYe_t_2M_AP93mTg</recordid><startdate>20171129</startdate><enddate>20171129</enddate><creator>Gevorkian, Zhyrair</creator><creator>Hakhoumian, Arsen</creator><creator>Gasparian, Vladimir</creator><creator>Cuevas, Emilio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171129</creationdate><title>Capsize of polarization in dilute photonic crystals</title><author>Gevorkian, Zhyrair ; Hakhoumian, Arsen ; Gasparian, Vladimir ; Cuevas, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d9420e99e7a8482ee8118ffb59a9bf97da72dbacc2b98bdbddaed8a93202559b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/624/399/1022</topic><topic>639/766</topic><topic>Antennas</topic><topic>Approximation</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Polarization</topic><topic>Receivers &amp; amplifiers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Splitting</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gevorkian, Zhyrair</creatorcontrib><creatorcontrib>Hakhoumian, Arsen</creatorcontrib><creatorcontrib>Gasparian, Vladimir</creatorcontrib><creatorcontrib>Cuevas, Emilio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gevorkian, Zhyrair</au><au>Hakhoumian, Arsen</au><au>Gasparian, Vladimir</au><au>Cuevas, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capsize of polarization in dilute photonic crystals</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-29</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>16593</spage><epage>9</epage><pages>16593-9</pages><artnum>16593</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell’s equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization’s rotation can be explained by an optical splitting parameter appearing naturally in Maxwell’s equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29185471</pmid><doi>10.1038/s41598-017-16847-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.16593-9, Article 16593
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5707359
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/624/399/1022
639/766
Antennas
Approximation
Crystals
Electric fields
Experiments
Humanities and Social Sciences
Mathematical models
multidisciplinary
Polarization
Receivers & amplifiers
Science
Science (multidisciplinary)
Splitting
Transmitters
title Capsize of polarization in dilute photonic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capsize%20of%20polarization%20in%20dilute%20photonic%20crystals&rft.jtitle=Scientific%20reports&rft.au=Gevorkian,%20Zhyrair&rft.date=2017-11-29&rft.volume=7&rft.issue=1&rft.spage=16593&rft.epage=9&rft.pages=16593-9&rft.artnum=16593&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-16847-8&rft_dat=%3Cproquest_pubme%3E1970271136%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970282680&rft_id=info:pmid/29185471&rfr_iscdi=true