HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features

DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2017-01, Vol.2017 (2017), p.1-10
Hauptverfasser: Dehzangi, Abdollah, Sharma, Alok, Rashid, Mahmood A., Chowdhury, Shahana Yasmin, Zaman, Rianon, Shatabda, Swakkhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2017
container_start_page 1
container_title BioMed research international
container_volume 2017
creator Dehzangi, Abdollah
Sharma, Alok
Rashid, Mahmood A.
Chowdhury, Shahana Yasmin
Zaman, Rianon
Shatabda, Swakkhar
description DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.
doi_str_mv 10.1155/2017/4590609
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5706079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557302016</galeid><sourcerecordid>A557302016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</originalsourceid><addsrcrecordid>eNqN0c1vFCEYBnBibGxTe_NsJvFiomP5GGDw0GT7rWnVgz0ThnnZ0sxChRmN_32Z7LqtnpwLJO8vzwAPQq8I_kAI54cUE3nYcIUFVs_QHmWkqQVpyPPtnrFddJDzHS5fSwoTL9AuVVTihuE99Pny-vrYhx7Sx-r0y6Ke9z4sq28pjuBDWaH3dvQxVDd5HhQ_D50foDo2GfrqHMw4Jcgv0Y4zQ4aDzbqPbs7Pvp9c1ldfLz6dLK5q2yg11hQopkIIazvDWtpS2nauk33XG4ZF31oJTEDjDDa85WBc2-Gu45g5w1gPlO2jo3Xu_dStoLcQxmQGfZ_8yqTfOhqv_54Ef6uX8afmsjyTVCXg7SYgxR8T5FGvfLYwDCZAnLImSiolWkGbQt_8Q-_ilEK5XlFCYV4e-YlamgG0Dy6W_9o5VC84lwyXmkRR79fKpphzArc9MsF6blPPbepNm4W_fnrNLf7TXQHv1uC2dGZ--f-Mg2LAmUdNmCyaPQAWhq5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969053144</pqid></control><display><type>article</type><title>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dehzangi, Abdollah ; Sharma, Alok ; Rashid, Mahmood A. ; Chowdhury, Shahana Yasmin ; Zaman, Rianon ; Shatabda, Swakkhar</creator><contributor>Harrison, Paul</contributor><creatorcontrib>Dehzangi, Abdollah ; Sharma, Alok ; Rashid, Mahmood A. ; Chowdhury, Shahana Yasmin ; Zaman, Rianon ; Shatabda, Swakkhar ; Harrison, Paul</creatorcontrib><description>DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/4590609</identifier><identifier>PMID: 29270430</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Amino Acid Sequence - genetics ; Artificial intelligence ; Bioinformatics ; Biomedical research ; Classification ; Computational Biology - methods ; Computer science ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; DNA-binding protein ; DNA-Binding Proteins - genetics ; Feature extraction ; Localization ; Machine learning ; Mathematical models ; Methods ; Pattern Recognition, Automated ; Physiological aspects ; Prokaryotes ; Proteins ; Support Vector Machine ; Support vector machines</subject><ispartof>BioMed research international, 2017-01, Vol.2017 (2017), p.1-10</ispartof><rights>Copyright © 2017 Rianon Zaman et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Rianon Zaman et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Rianon Zaman et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</citedby><cites>FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</cites><orcidid>0000-0001-9919-5482 ; 0000-0003-3347-2381 ; 0000-0003-0669-072X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29270430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Harrison, Paul</contributor><creatorcontrib>Dehzangi, Abdollah</creatorcontrib><creatorcontrib>Sharma, Alok</creatorcontrib><creatorcontrib>Rashid, Mahmood A.</creatorcontrib><creatorcontrib>Chowdhury, Shahana Yasmin</creatorcontrib><creatorcontrib>Zaman, Rianon</creatorcontrib><creatorcontrib>Shatabda, Swakkhar</creatorcontrib><title>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.</description><subject>Algorithms</subject><subject>Amino Acid Sequence - genetics</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical research</subject><subject>Classification</subject><subject>Computational Biology - methods</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Feature extraction</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Pattern Recognition, Automated</subject><subject>Physiological aspects</subject><subject>Prokaryotes</subject><subject>Proteins</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0c1vFCEYBnBibGxTe_NsJvFiomP5GGDw0GT7rWnVgz0ThnnZ0sxChRmN_32Z7LqtnpwLJO8vzwAPQq8I_kAI54cUE3nYcIUFVs_QHmWkqQVpyPPtnrFddJDzHS5fSwoTL9AuVVTihuE99Pny-vrYhx7Sx-r0y6Ke9z4sq28pjuBDWaH3dvQxVDd5HhQ_D50foDo2GfrqHMw4Jcgv0Y4zQ4aDzbqPbs7Pvp9c1ldfLz6dLK5q2yg11hQopkIIazvDWtpS2nauk33XG4ZF31oJTEDjDDa85WBc2-Gu45g5w1gPlO2jo3Xu_dStoLcQxmQGfZ_8yqTfOhqv_54Ef6uX8afmsjyTVCXg7SYgxR8T5FGvfLYwDCZAnLImSiolWkGbQt_8Q-_ilEK5XlFCYV4e-YlamgG0Dy6W_9o5VC84lwyXmkRR79fKpphzArc9MsF6blPPbepNm4W_fnrNLf7TXQHv1uC2dGZ--f-Mg2LAmUdNmCyaPQAWhq5U</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Dehzangi, Abdollah</creator><creator>Sharma, Alok</creator><creator>Rashid, Mahmood A.</creator><creator>Chowdhury, Shahana Yasmin</creator><creator>Zaman, Rianon</creator><creator>Shatabda, Swakkhar</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9919-5482</orcidid><orcidid>https://orcid.org/0000-0003-3347-2381</orcidid><orcidid>https://orcid.org/0000-0003-0669-072X</orcidid></search><sort><creationdate>20170101</creationdate><title>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</title><author>Dehzangi, Abdollah ; Sharma, Alok ; Rashid, Mahmood A. ; Chowdhury, Shahana Yasmin ; Zaman, Rianon ; Shatabda, Swakkhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence - genetics</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical research</topic><topic>Classification</topic><topic>Computational Biology - methods</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Feature extraction</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Pattern Recognition, Automated</topic><topic>Physiological aspects</topic><topic>Prokaryotes</topic><topic>Proteins</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehzangi, Abdollah</creatorcontrib><creatorcontrib>Sharma, Alok</creatorcontrib><creatorcontrib>Rashid, Mahmood A.</creatorcontrib><creatorcontrib>Chowdhury, Shahana Yasmin</creatorcontrib><creatorcontrib>Zaman, Rianon</creatorcontrib><creatorcontrib>Shatabda, Swakkhar</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehzangi, Abdollah</au><au>Sharma, Alok</au><au>Rashid, Mahmood A.</au><au>Chowdhury, Shahana Yasmin</au><au>Zaman, Rianon</au><au>Shatabda, Swakkhar</au><au>Harrison, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29270430</pmid><doi>10.1155/2017/4590609</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9919-5482</orcidid><orcidid>https://orcid.org/0000-0003-3347-2381</orcidid><orcidid>https://orcid.org/0000-0003-0669-072X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2017-01, Vol.2017 (2017), p.1-10
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5706079
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Amino Acid Sequence - genetics
Artificial intelligence
Bioinformatics
Biomedical research
Classification
Computational Biology - methods
Computer science
Datasets
Deoxyribonucleic acid
DNA
DNA binding proteins
DNA-binding protein
DNA-Binding Proteins - genetics
Feature extraction
Localization
Machine learning
Mathematical models
Methods
Pattern Recognition, Automated
Physiological aspects
Prokaryotes
Proteins
Support Vector Machine
Support vector machines
title HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HMMBinder:%20DNA-Binding%20Protein%20Prediction%20Using%20HMM%20Profile%20Based%20Features&rft.jtitle=BioMed%20research%20international&rft.au=Dehzangi,%20Abdollah&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/4590609&rft_dat=%3Cgale_pubme%3EA557302016%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969053144&rft_id=info:pmid/29270430&rft_galeid=A557302016&rfr_iscdi=true