HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features
DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2017-01, Vol.2017 (2017), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2017 |
creator | Dehzangi, Abdollah Sharma, Alok Rashid, Mahmood A. Chowdhury, Shahana Yasmin Zaman, Rianon Shatabda, Swakkhar |
description | DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature. |
doi_str_mv | 10.1155/2017/4590609 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5706079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557302016</galeid><sourcerecordid>A557302016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</originalsourceid><addsrcrecordid>eNqN0c1vFCEYBnBibGxTe_NsJvFiomP5GGDw0GT7rWnVgz0ThnnZ0sxChRmN_32Z7LqtnpwLJO8vzwAPQq8I_kAI54cUE3nYcIUFVs_QHmWkqQVpyPPtnrFddJDzHS5fSwoTL9AuVVTihuE99Pny-vrYhx7Sx-r0y6Ke9z4sq28pjuBDWaH3dvQxVDd5HhQ_D50foDo2GfrqHMw4Jcgv0Y4zQ4aDzbqPbs7Pvp9c1ldfLz6dLK5q2yg11hQopkIIazvDWtpS2nauk33XG4ZF31oJTEDjDDa85WBc2-Gu45g5w1gPlO2jo3Xu_dStoLcQxmQGfZ_8yqTfOhqv_54Ef6uX8afmsjyTVCXg7SYgxR8T5FGvfLYwDCZAnLImSiolWkGbQt_8Q-_ilEK5XlFCYV4e-YlamgG0Dy6W_9o5VC84lwyXmkRR79fKpphzArc9MsF6blPPbepNm4W_fnrNLf7TXQHv1uC2dGZ--f-Mg2LAmUdNmCyaPQAWhq5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1969053144</pqid></control><display><type>article</type><title>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dehzangi, Abdollah ; Sharma, Alok ; Rashid, Mahmood A. ; Chowdhury, Shahana Yasmin ; Zaman, Rianon ; Shatabda, Swakkhar</creator><contributor>Harrison, Paul</contributor><creatorcontrib>Dehzangi, Abdollah ; Sharma, Alok ; Rashid, Mahmood A. ; Chowdhury, Shahana Yasmin ; Zaman, Rianon ; Shatabda, Swakkhar ; Harrison, Paul</creatorcontrib><description>DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/4590609</identifier><identifier>PMID: 29270430</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Amino Acid Sequence - genetics ; Artificial intelligence ; Bioinformatics ; Biomedical research ; Classification ; Computational Biology - methods ; Computer science ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; DNA-binding protein ; DNA-Binding Proteins - genetics ; Feature extraction ; Localization ; Machine learning ; Mathematical models ; Methods ; Pattern Recognition, Automated ; Physiological aspects ; Prokaryotes ; Proteins ; Support Vector Machine ; Support vector machines</subject><ispartof>BioMed research international, 2017-01, Vol.2017 (2017), p.1-10</ispartof><rights>Copyright © 2017 Rianon Zaman et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Rianon Zaman et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Rianon Zaman et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</citedby><cites>FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</cites><orcidid>0000-0001-9919-5482 ; 0000-0003-3347-2381 ; 0000-0003-0669-072X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29270430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Harrison, Paul</contributor><creatorcontrib>Dehzangi, Abdollah</creatorcontrib><creatorcontrib>Sharma, Alok</creatorcontrib><creatorcontrib>Rashid, Mahmood A.</creatorcontrib><creatorcontrib>Chowdhury, Shahana Yasmin</creatorcontrib><creatorcontrib>Zaman, Rianon</creatorcontrib><creatorcontrib>Shatabda, Swakkhar</creatorcontrib><title>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.</description><subject>Algorithms</subject><subject>Amino Acid Sequence - genetics</subject><subject>Artificial intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical research</subject><subject>Classification</subject><subject>Computational Biology - methods</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Feature extraction</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Pattern Recognition, Automated</subject><subject>Physiological aspects</subject><subject>Prokaryotes</subject><subject>Proteins</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0c1vFCEYBnBibGxTe_NsJvFiomP5GGDw0GT7rWnVgz0ThnnZ0sxChRmN_32Z7LqtnpwLJO8vzwAPQq8I_kAI54cUE3nYcIUFVs_QHmWkqQVpyPPtnrFddJDzHS5fSwoTL9AuVVTihuE99Pny-vrYhx7Sx-r0y6Ke9z4sq28pjuBDWaH3dvQxVDd5HhQ_D50foDo2GfrqHMw4Jcgv0Y4zQ4aDzbqPbs7Pvp9c1ldfLz6dLK5q2yg11hQopkIIazvDWtpS2nauk33XG4ZF31oJTEDjDDa85WBc2-Gu45g5w1gPlO2jo3Xu_dStoLcQxmQGfZ_8yqTfOhqv_54Ef6uX8afmsjyTVCXg7SYgxR8T5FGvfLYwDCZAnLImSiolWkGbQt_8Q-_ilEK5XlFCYV4e-YlamgG0Dy6W_9o5VC84lwyXmkRR79fKpphzArc9MsF6blPPbepNm4W_fnrNLf7TXQHv1uC2dGZ--f-Mg2LAmUdNmCyaPQAWhq5U</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Dehzangi, Abdollah</creator><creator>Sharma, Alok</creator><creator>Rashid, Mahmood A.</creator><creator>Chowdhury, Shahana Yasmin</creator><creator>Zaman, Rianon</creator><creator>Shatabda, Swakkhar</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9919-5482</orcidid><orcidid>https://orcid.org/0000-0003-3347-2381</orcidid><orcidid>https://orcid.org/0000-0003-0669-072X</orcidid></search><sort><creationdate>20170101</creationdate><title>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</title><author>Dehzangi, Abdollah ; Sharma, Alok ; Rashid, Mahmood A. ; Chowdhury, Shahana Yasmin ; Zaman, Rianon ; Shatabda, Swakkhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-2e202666ccba3828228bfb7dbda306d8c7e36e4fa0a585eaf8b0bb503fa33de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence - genetics</topic><topic>Artificial intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical research</topic><topic>Classification</topic><topic>Computational Biology - methods</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Feature extraction</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Pattern Recognition, Automated</topic><topic>Physiological aspects</topic><topic>Prokaryotes</topic><topic>Proteins</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehzangi, Abdollah</creatorcontrib><creatorcontrib>Sharma, Alok</creatorcontrib><creatorcontrib>Rashid, Mahmood A.</creatorcontrib><creatorcontrib>Chowdhury, Shahana Yasmin</creatorcontrib><creatorcontrib>Zaman, Rianon</creatorcontrib><creatorcontrib>Shatabda, Swakkhar</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehzangi, Abdollah</au><au>Sharma, Alok</au><au>Rashid, Mahmood A.</au><au>Chowdhury, Shahana Yasmin</au><au>Zaman, Rianon</au><au>Shatabda, Swakkhar</au><au>Harrison, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29270430</pmid><doi>10.1155/2017/4590609</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9919-5482</orcidid><orcidid>https://orcid.org/0000-0003-3347-2381</orcidid><orcidid>https://orcid.org/0000-0003-0669-072X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2017-01, Vol.2017 (2017), p.1-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5706079 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Amino Acid Sequence - genetics Artificial intelligence Bioinformatics Biomedical research Classification Computational Biology - methods Computer science Datasets Deoxyribonucleic acid DNA DNA binding proteins DNA-binding protein DNA-Binding Proteins - genetics Feature extraction Localization Machine learning Mathematical models Methods Pattern Recognition, Automated Physiological aspects Prokaryotes Proteins Support Vector Machine Support vector machines |
title | HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HMMBinder:%20DNA-Binding%20Protein%20Prediction%20Using%20HMM%20Profile%20Based%20Features&rft.jtitle=BioMed%20research%20international&rft.au=Dehzangi,%20Abdollah&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/4590609&rft_dat=%3Cgale_pubme%3EA557302016%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1969053144&rft_id=info:pmid/29270430&rft_galeid=A557302016&rfr_iscdi=true |