Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae

Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2017-11, Vol.44, p.117-125
Hauptverfasser: Billingsley, John M., DeNicola, Anthony B., Barber, Joyann S., Tang, Man-Cheng, Horecka, Joe, Chu, Angela, Garg, Neil K., Tang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue
container_start_page 117
container_title Metabolic engineering
container_volume 44
creator Billingsley, John M.
DeNicola, Anthony B.
Barber, Joyann S.
Tang, Man-Cheng
Horecka, Joe
Chu, Angela
Garg, Neil K.
Tang, Yi
description Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs. [Display omitted]
doi_str_mv 10.1016/j.ymben.2017.09.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5705256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109671761730304X</els_id><sourcerecordid>1942700186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERT_gFyChHLlsGDuJEx9AQlUpSJV6KFy4WM54dndWib3Y2ZXy75tlywou9GTLfuYde54seyugECDUh00xDR35QoJoCtAFgHqRXQjQatGItnp52jfqPLtMaQMgRK3Fq-xctrrUsmkvsp83fsWeKLJf5eOa8o4D2tH208iYJ-oJR97zOOVhmXNkF9jl2xjcbj4PPmefP1jEtY1hmJBSjhRpz4ktvc7OlrZP9OZpvcp-fLn5fv11cXd_--36890CKy3HBXVUobJlC40WkmSNVtSg0VmqqETXoAPnoJRUdRW1S9cJVDUqpUBrbGV5lX065m533UAOyY_R9mYbebBxMsGy-ffG89qswt7UDdSyVnPA-6eAGH7tKI1m4ITU99ZT2CUjAeDAltWzqNCVbOY5t4fU8ohiDClFWp5eJMAcBJqN-S3QHAQa0GYWOFe9-_szp5o_xmbg4xGgeaR7pmgSMnkkx3F2ZWZB_23wCBW6sK8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942700186</pqid></control><display><type>article</type><title>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Billingsley, John M. ; DeNicola, Anthony B. ; Barber, Joyann S. ; Tang, Man-Cheng ; Horecka, Joe ; Chu, Angela ; Garg, Neil K. ; Tang, Yi</creator><creatorcontrib>Billingsley, John M. ; DeNicola, Anthony B. ; Barber, Joyann S. ; Tang, Man-Cheng ; Horecka, Joe ; Chu, Angela ; Garg, Neil K. ; Tang, Yi</creatorcontrib><description>Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs. [Display omitted]</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2017.09.006</identifier><identifier>PMID: 28939278</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>alcohol dehydrogenase ; biotransformation ; carbon ; engineering ; genes ; indole alkaloids ; Iridoids ; metabolism ; Monoterpene indole alkaloids ; monoterpenoids ; Old yellow enzyme ; oxidation ; Saccharomyces cerevisiae ; yeasts</subject><ispartof>Metabolic engineering, 2017-11, Vol.44, p.117-125</ispartof><rights>2017 International Metabolic Engineering Society</rights><rights>Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</citedby><cites>FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109671761730304X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28939278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Billingsley, John M.</creatorcontrib><creatorcontrib>DeNicola, Anthony B.</creatorcontrib><creatorcontrib>Barber, Joyann S.</creatorcontrib><creatorcontrib>Tang, Man-Cheng</creatorcontrib><creatorcontrib>Horecka, Joe</creatorcontrib><creatorcontrib>Chu, Angela</creatorcontrib><creatorcontrib>Garg, Neil K.</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><title>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs. [Display omitted]</description><subject>alcohol dehydrogenase</subject><subject>biotransformation</subject><subject>carbon</subject><subject>engineering</subject><subject>genes</subject><subject>indole alkaloids</subject><subject>Iridoids</subject><subject>metabolism</subject><subject>Monoterpene indole alkaloids</subject><subject>monoterpenoids</subject><subject>Old yellow enzyme</subject><subject>oxidation</subject><subject>Saccharomyces cerevisiae</subject><subject>yeasts</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNERT_gFyChHLlsGDuJEx9AQlUpSJV6KFy4WM54dndWib3Y2ZXy75tlywou9GTLfuYde54seyugECDUh00xDR35QoJoCtAFgHqRXQjQatGItnp52jfqPLtMaQMgRK3Fq-xctrrUsmkvsp83fsWeKLJf5eOa8o4D2tH208iYJ-oJR97zOOVhmXNkF9jl2xjcbj4PPmefP1jEtY1hmJBSjhRpz4ktvc7OlrZP9OZpvcp-fLn5fv11cXd_--36890CKy3HBXVUobJlC40WkmSNVtSg0VmqqETXoAPnoJRUdRW1S9cJVDUqpUBrbGV5lX065m533UAOyY_R9mYbebBxMsGy-ffG89qswt7UDdSyVnPA-6eAGH7tKI1m4ITU99ZT2CUjAeDAltWzqNCVbOY5t4fU8ohiDClFWp5eJMAcBJqN-S3QHAQa0GYWOFe9-_szp5o_xmbg4xGgeaR7pmgSMnkkx3F2ZWZB_23wCBW6sK8</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Billingsley, John M.</creator><creator>DeNicola, Anthony B.</creator><creator>Barber, Joyann S.</creator><creator>Tang, Man-Cheng</creator><creator>Horecka, Joe</creator><creator>Chu, Angela</creator><creator>Garg, Neil K.</creator><creator>Tang, Yi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</title><author>Billingsley, John M. ; DeNicola, Anthony B. ; Barber, Joyann S. ; Tang, Man-Cheng ; Horecka, Joe ; Chu, Angela ; Garg, Neil K. ; Tang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>alcohol dehydrogenase</topic><topic>biotransformation</topic><topic>carbon</topic><topic>engineering</topic><topic>genes</topic><topic>indole alkaloids</topic><topic>Iridoids</topic><topic>metabolism</topic><topic>Monoterpene indole alkaloids</topic><topic>monoterpenoids</topic><topic>Old yellow enzyme</topic><topic>oxidation</topic><topic>Saccharomyces cerevisiae</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billingsley, John M.</creatorcontrib><creatorcontrib>DeNicola, Anthony B.</creatorcontrib><creatorcontrib>Barber, Joyann S.</creatorcontrib><creatorcontrib>Tang, Man-Cheng</creatorcontrib><creatorcontrib>Horecka, Joe</creatorcontrib><creatorcontrib>Chu, Angela</creatorcontrib><creatorcontrib>Garg, Neil K.</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billingsley, John M.</au><au>DeNicola, Anthony B.</au><au>Barber, Joyann S.</au><au>Tang, Man-Cheng</au><au>Horecka, Joe</au><au>Chu, Angela</au><au>Garg, Neil K.</au><au>Tang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>44</volume><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs. [Display omitted]</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>28939278</pmid><doi>10.1016/j.ymben.2017.09.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2017-11, Vol.44, p.117-125
issn 1096-7176
1096-7184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5705256
source Elsevier ScienceDirect Journals Complete
subjects alcohol dehydrogenase
biotransformation
carbon
engineering
genes
indole alkaloids
Iridoids
metabolism
Monoterpene indole alkaloids
monoterpenoids
Old yellow enzyme
oxidation
Saccharomyces cerevisiae
yeasts
title Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20biocatalytic%20selectivity%20of%20iridoid%20production%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Metabolic%20engineering&rft.au=Billingsley,%20John%20M.&rft.date=2017-11-01&rft.volume=44&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2017.09.006&rft_dat=%3Cproquest_pubme%3E1942700186%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942700186&rft_id=info:pmid/28939278&rft_els_id=S109671761730304X&rfr_iscdi=true