Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae
Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production....
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2017-11, Vol.44, p.117-125 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | |
container_start_page | 117 |
container_title | Metabolic engineering |
container_volume | 44 |
creator | Billingsley, John M. DeNicola, Anthony B. Barber, Joyann S. Tang, Man-Cheng Horecka, Joe Chu, Angela Garg, Neil K. Tang, Yi |
description | Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
[Display omitted] |
doi_str_mv | 10.1016/j.ymben.2017.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5705256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109671761730304X</els_id><sourcerecordid>1942700186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERT_gFyChHLlsGDuJEx9AQlUpSJV6KFy4WM54dndWib3Y2ZXy75tlywou9GTLfuYde54seyugECDUh00xDR35QoJoCtAFgHqRXQjQatGItnp52jfqPLtMaQMgRK3Fq-xctrrUsmkvsp83fsWeKLJf5eOa8o4D2tH208iYJ-oJR97zOOVhmXNkF9jl2xjcbj4PPmefP1jEtY1hmJBSjhRpz4ktvc7OlrZP9OZpvcp-fLn5fv11cXd_--36890CKy3HBXVUobJlC40WkmSNVtSg0VmqqETXoAPnoJRUdRW1S9cJVDUqpUBrbGV5lX065m533UAOyY_R9mYbebBxMsGy-ffG89qswt7UDdSyVnPA-6eAGH7tKI1m4ITU99ZT2CUjAeDAltWzqNCVbOY5t4fU8ohiDClFWp5eJMAcBJqN-S3QHAQa0GYWOFe9-_szp5o_xmbg4xGgeaR7pmgSMnkkx3F2ZWZB_23wCBW6sK8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942700186</pqid></control><display><type>article</type><title>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Billingsley, John M. ; DeNicola, Anthony B. ; Barber, Joyann S. ; Tang, Man-Cheng ; Horecka, Joe ; Chu, Angela ; Garg, Neil K. ; Tang, Yi</creator><creatorcontrib>Billingsley, John M. ; DeNicola, Anthony B. ; Barber, Joyann S. ; Tang, Man-Cheng ; Horecka, Joe ; Chu, Angela ; Garg, Neil K. ; Tang, Yi</creatorcontrib><description>Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
[Display omitted]</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2017.09.006</identifier><identifier>PMID: 28939278</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>alcohol dehydrogenase ; biotransformation ; carbon ; engineering ; genes ; indole alkaloids ; Iridoids ; metabolism ; Monoterpene indole alkaloids ; monoterpenoids ; Old yellow enzyme ; oxidation ; Saccharomyces cerevisiae ; yeasts</subject><ispartof>Metabolic engineering, 2017-11, Vol.44, p.117-125</ispartof><rights>2017 International Metabolic Engineering Society</rights><rights>Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</citedby><cites>FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109671761730304X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28939278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Billingsley, John M.</creatorcontrib><creatorcontrib>DeNicola, Anthony B.</creatorcontrib><creatorcontrib>Barber, Joyann S.</creatorcontrib><creatorcontrib>Tang, Man-Cheng</creatorcontrib><creatorcontrib>Horecka, Joe</creatorcontrib><creatorcontrib>Chu, Angela</creatorcontrib><creatorcontrib>Garg, Neil K.</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><title>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
[Display omitted]</description><subject>alcohol dehydrogenase</subject><subject>biotransformation</subject><subject>carbon</subject><subject>engineering</subject><subject>genes</subject><subject>indole alkaloids</subject><subject>Iridoids</subject><subject>metabolism</subject><subject>Monoterpene indole alkaloids</subject><subject>monoterpenoids</subject><subject>Old yellow enzyme</subject><subject>oxidation</subject><subject>Saccharomyces cerevisiae</subject><subject>yeasts</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNERT_gFyChHLlsGDuJEx9AQlUpSJV6KFy4WM54dndWib3Y2ZXy75tlywou9GTLfuYde54seyugECDUh00xDR35QoJoCtAFgHqRXQjQatGItnp52jfqPLtMaQMgRK3Fq-xctrrUsmkvsp83fsWeKLJf5eOa8o4D2tH208iYJ-oJR97zOOVhmXNkF9jl2xjcbj4PPmefP1jEtY1hmJBSjhRpz4ktvc7OlrZP9OZpvcp-fLn5fv11cXd_--36890CKy3HBXVUobJlC40WkmSNVtSg0VmqqETXoAPnoJRUdRW1S9cJVDUqpUBrbGV5lX065m533UAOyY_R9mYbebBxMsGy-ffG89qswt7UDdSyVnPA-6eAGH7tKI1m4ITU99ZT2CUjAeDAltWzqNCVbOY5t4fU8ohiDClFWp5eJMAcBJqN-S3QHAQa0GYWOFe9-_szp5o_xmbg4xGgeaR7pmgSMnkkx3F2ZWZB_23wCBW6sK8</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Billingsley, John M.</creator><creator>DeNicola, Anthony B.</creator><creator>Barber, Joyann S.</creator><creator>Tang, Man-Cheng</creator><creator>Horecka, Joe</creator><creator>Chu, Angela</creator><creator>Garg, Neil K.</creator><creator>Tang, Yi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</title><author>Billingsley, John M. ; DeNicola, Anthony B. ; Barber, Joyann S. ; Tang, Man-Cheng ; Horecka, Joe ; Chu, Angela ; Garg, Neil K. ; Tang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ebe4c6a3807912e25ca1509cdae4e3cd7cd0dd032e4b4e8fdb1c65c666099c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>alcohol dehydrogenase</topic><topic>biotransformation</topic><topic>carbon</topic><topic>engineering</topic><topic>genes</topic><topic>indole alkaloids</topic><topic>Iridoids</topic><topic>metabolism</topic><topic>Monoterpene indole alkaloids</topic><topic>monoterpenoids</topic><topic>Old yellow enzyme</topic><topic>oxidation</topic><topic>Saccharomyces cerevisiae</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billingsley, John M.</creatorcontrib><creatorcontrib>DeNicola, Anthony B.</creatorcontrib><creatorcontrib>Barber, Joyann S.</creatorcontrib><creatorcontrib>Tang, Man-Cheng</creatorcontrib><creatorcontrib>Horecka, Joe</creatorcontrib><creatorcontrib>Chu, Angela</creatorcontrib><creatorcontrib>Garg, Neil K.</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billingsley, John M.</au><au>DeNicola, Anthony B.</au><au>Barber, Joyann S.</au><au>Tang, Man-Cheng</au><au>Horecka, Joe</au><au>Chu, Angela</au><au>Garg, Neil K.</au><au>Tang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>44</volume><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
[Display omitted]</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>28939278</pmid><doi>10.1016/j.ymben.2017.09.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2017-11, Vol.44, p.117-125 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5705256 |
source | Elsevier ScienceDirect Journals Complete |
subjects | alcohol dehydrogenase biotransformation carbon engineering genes indole alkaloids Iridoids metabolism Monoterpene indole alkaloids monoterpenoids Old yellow enzyme oxidation Saccharomyces cerevisiae yeasts |
title | Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20biocatalytic%20selectivity%20of%20iridoid%20production%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Metabolic%20engineering&rft.au=Billingsley,%20John%20M.&rft.date=2017-11-01&rft.volume=44&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2017.09.006&rft_dat=%3Cproquest_pubme%3E1942700186%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942700186&rft_id=info:pmid/28939278&rft_els_id=S109671761730304X&rfr_iscdi=true |