Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels

[Display omitted] Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2017-03, Vol.51, p.184-196
Hauptverfasser: Guerra, Alberto Daniel, Rose, Warren E., Hematti, Peiman, Kao, W. John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue
container_start_page 184
container_title Acta biomaterialia
container_volume 51
creator Guerra, Alberto Daniel
Rose, Warren E.
Hematti, Peiman
Kao, W. John
description [Display omitted] Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds.
doi_str_mv 10.1016/j.actbio.2017.01.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5704963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706117300211</els_id><sourcerecordid>1857371462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-5e4146687ae83231a5c56e2c7621cfd88b5a4fc69c43afadce5ad883c735994c3</originalsourceid><addsrcrecordid>eNp9UcuO1DAQjBCIXRb-ACFLXLgk60f8mAsSWvGSFnGBs-VxOhOPHDvYzkr5ezyaZXkcOLXlrq7uqmqalwR3BBNxfeyMLXsXO4qJ7DDpMCWPmkuipGolF-pxfcuethILctE8y_mIMVOEqqfNBVVY7Dihl836xYVoN-tdAARhMsFCRmUCNEOGYKdtNh7lkmKt17nAjCx4j5YU2wlMHTugZYIQy7YAcgGV5BYPyITiZmdT3DvjWx_NAAOatiHFA_j8vHkyGp_hxX29ar5_eP_t5lN7-_Xj55t3t63lVJWWQ096IZQ0oBhlxHDLBVArBSV2HJTac9OPVuxsz8xoBgvc1F9mJeO7XW_ZVfP2zLus-xlqP5RkvF6Sm03adDRO_90JbtKHeKe5xP1OsErw5p4gxR8r5KJnl08GmABxzZooLpmsR9IKff0P9BjXFKo8TU5UVQAjFdWfUdWanBOMD8cQrE-56qM-56pPuWpMdM21jr36U8jD0K8gfyut7sKdg6SzdTU_GFwCW_QQ3f83_AS3_bla</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963332331</pqid></control><display><type>article</type><title>Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Guerra, Alberto Daniel ; Rose, Warren E. ; Hematti, Peiman ; Kao, W. John</creator><creatorcontrib>Guerra, Alberto Daniel ; Rose, Warren E. ; Hematti, Peiman ; Kao, W. John</creatorcontrib><description>[Display omitted] Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2017.01.021</identifier><identifier>PMID: 28069512</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adhesion ; Adult ; Angiogenesis ; Anti-Infective Agents - pharmacology ; Antiinfectives and antibacterials ; Antimicrobial agents ; Bacteria ; Bacterial Adhesion - drug effects ; Biofilms ; Cell Adhesion - drug effects ; Cell Survival - drug effects ; Crosslinking ; Extracellular matrix ; Gelatin ; Gene expression ; Genotype &amp; phenotype ; Growth factors ; Human Umbilical Vein Endothelial Cells - drug effects ; Humans ; Hydrogel ; Hydrogels ; Hydrogels - pharmacology ; Immunomodulation - drug effects ; Inflammation ; Intercellular Signaling Peptides and Proteins - pharmacology ; Linezolid ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchymal stromal/stem cells ; Mesenchyme ; Microbial Sensitivity Tests ; Microorganisms ; Minocycline ; Minocycline - pharmacology ; Neovascularization, Physiologic - drug effects ; Phenotype ; Polyethylene glycol ; Protein adsorption ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - growth &amp; development ; Stem cells ; Vancomycin ; Wound healing ; Wound Healing - drug effects</subject><ispartof>Acta biomaterialia, 2017-03, Vol.51, p.184-196</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Mar 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-5e4146687ae83231a5c56e2c7621cfd88b5a4fc69c43afadce5ad883c735994c3</citedby><cites>FETCH-LOGICAL-c528t-5e4146687ae83231a5c56e2c7621cfd88b5a4fc69c43afadce5ad883c735994c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2017.01.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28069512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerra, Alberto Daniel</creatorcontrib><creatorcontrib>Rose, Warren E.</creatorcontrib><creatorcontrib>Hematti, Peiman</creatorcontrib><creatorcontrib>Kao, W. John</creatorcontrib><title>Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds.</description><subject>Adhesion</subject><subject>Adult</subject><subject>Angiogenesis</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial Adhesion - drug effects</subject><subject>Biofilms</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Crosslinking</subject><subject>Extracellular matrix</subject><subject>Gelatin</subject><subject>Gene expression</subject><subject>Genotype &amp; phenotype</subject><subject>Growth factors</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Humans</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Immunomodulation - drug effects</subject><subject>Inflammation</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Linezolid</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal stromal/stem cells</subject><subject>Mesenchyme</subject><subject>Microbial Sensitivity Tests</subject><subject>Microorganisms</subject><subject>Minocycline</subject><subject>Minocycline - pharmacology</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Phenotype</subject><subject>Polyethylene glycol</subject><subject>Protein adsorption</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - growth &amp; development</subject><subject>Stem cells</subject><subject>Vancomycin</subject><subject>Wound healing</subject><subject>Wound Healing - drug effects</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcuO1DAQjBCIXRb-ACFLXLgk60f8mAsSWvGSFnGBs-VxOhOPHDvYzkr5ezyaZXkcOLXlrq7uqmqalwR3BBNxfeyMLXsXO4qJ7DDpMCWPmkuipGolF-pxfcuethILctE8y_mIMVOEqqfNBVVY7Dihl836xYVoN-tdAARhMsFCRmUCNEOGYKdtNh7lkmKt17nAjCx4j5YU2wlMHTugZYIQy7YAcgGV5BYPyITiZmdT3DvjWx_NAAOatiHFA_j8vHkyGp_hxX29ar5_eP_t5lN7-_Xj55t3t63lVJWWQ096IZQ0oBhlxHDLBVArBSV2HJTac9OPVuxsz8xoBgvc1F9mJeO7XW_ZVfP2zLus-xlqP5RkvF6Sm03adDRO_90JbtKHeKe5xP1OsErw5p4gxR8r5KJnl08GmABxzZooLpmsR9IKff0P9BjXFKo8TU5UVQAjFdWfUdWanBOMD8cQrE-56qM-56pPuWpMdM21jr36U8jD0K8gfyut7sKdg6SzdTU_GFwCW_QQ3f83_AS3_bla</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Guerra, Alberto Daniel</creator><creator>Rose, Warren E.</creator><creator>Hematti, Peiman</creator><creator>Kao, W. John</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170315</creationdate><title>Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels</title><author>Guerra, Alberto Daniel ; Rose, Warren E. ; Hematti, Peiman ; Kao, W. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-5e4146687ae83231a5c56e2c7621cfd88b5a4fc69c43afadce5ad883c735994c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Adult</topic><topic>Angiogenesis</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial Adhesion - drug effects</topic><topic>Biofilms</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Crosslinking</topic><topic>Extracellular matrix</topic><topic>Gelatin</topic><topic>Gene expression</topic><topic>Genotype &amp; phenotype</topic><topic>Growth factors</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Humans</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Immunomodulation - drug effects</topic><topic>Inflammation</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Linezolid</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal stromal/stem cells</topic><topic>Mesenchyme</topic><topic>Microbial Sensitivity Tests</topic><topic>Microorganisms</topic><topic>Minocycline</topic><topic>Minocycline - pharmacology</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Phenotype</topic><topic>Polyethylene glycol</topic><topic>Protein adsorption</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - growth &amp; development</topic><topic>Stem cells</topic><topic>Vancomycin</topic><topic>Wound healing</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerra, Alberto Daniel</creatorcontrib><creatorcontrib>Rose, Warren E.</creatorcontrib><creatorcontrib>Hematti, Peiman</creatorcontrib><creatorcontrib>Kao, W. John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerra, Alberto Daniel</au><au>Rose, Warren E.</au><au>Hematti, Peiman</au><au>Kao, W. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2017-03-15</date><risdate>2017</risdate><volume>51</volume><spage>184</spage><epage>196</epage><pages>184-196</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28069512</pmid><doi>10.1016/j.actbio.2017.01.021</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2017-03, Vol.51, p.184-196
issn 1742-7061
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5704963
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adhesion
Adult
Angiogenesis
Anti-Infective Agents - pharmacology
Antiinfectives and antibacterials
Antimicrobial agents
Bacteria
Bacterial Adhesion - drug effects
Biofilms
Cell Adhesion - drug effects
Cell Survival - drug effects
Crosslinking
Extracellular matrix
Gelatin
Gene expression
Genotype & phenotype
Growth factors
Human Umbilical Vein Endothelial Cells - drug effects
Humans
Hydrogel
Hydrogels
Hydrogels - pharmacology
Immunomodulation - drug effects
Inflammation
Intercellular Signaling Peptides and Proteins - pharmacology
Linezolid
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - drug effects
Mesenchymal stromal/stem cells
Mesenchyme
Microbial Sensitivity Tests
Microorganisms
Minocycline
Minocycline - pharmacology
Neovascularization, Physiologic - drug effects
Phenotype
Polyethylene glycol
Protein adsorption
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - growth & development
Stem cells
Vancomycin
Wound healing
Wound Healing - drug effects
title Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minocycline%20enhances%20the%20mesenchymal%20stromal/stem%20cell%20pro-healing%20phenotype%20in%20triple%20antimicrobial-loaded%20hydrogels&rft.jtitle=Acta%20biomaterialia&rft.au=Guerra,%20Alberto%20Daniel&rft.date=2017-03-15&rft.volume=51&rft.spage=184&rft.epage=196&rft.pages=184-196&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2017.01.021&rft_dat=%3Cproquest_pubme%3E1857371462%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963332331&rft_id=info:pmid/28069512&rft_els_id=S1742706117300211&rfr_iscdi=true