Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences
The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing si...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-11, Vol.292 (47), p.19160-19178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19178 |
---|---|
container_issue | 47 |
container_start_page | 19160 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Anderson, Edward N. Wharton, Kristi A. |
description | The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer–mediated wing vein patterning but not for Gbb15–Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions. |
doi_str_mv | 10.1074/jbc.M117.793513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5702660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820328908</els_id><sourcerecordid>1940593261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-24aaea08006f66c1261e0843c30694ea3f2ecc14261370006fa90307e9e9077d3</originalsourceid><addsrcrecordid>eNp1UcFu1DAUtBCILgtnbsjHIjXb59ibrC9IpSoFqRUcQOJmOc7LrqvEDrYTxG_0i3G0pYIDvtgaj-eNZwh5zWDDoBbnd43Z3DJWb2rJt4w_ISsGO17k8_enZAVQskKW290JeRHjHeQlJHtOTsqdLAWIckXuL_qEwelkZ6SmRz3rPVLf0XRA2niHdPBhPPg9OkzW0DH4hNbR0_e3X96e0eumOVuwdjIYaW_32rWR_rTpQFsbk3Um0RZn7P04oEu6p92UMetdpJlKAxockw9ZAzsM6LLMS_Ks033EVw_7mnz7cPX18mNx8_n60-XFTWGE4KkohdaoYQdQdVVlWFkxhJ3ghkMlBWrelWgMExnnNSwsLYFDjRIl1HXL1-TdUXecmgFbk_0F3asx2EGHX8prq_69cfag9n5W2xrKqoIscPogEPyPCWNSg40G-1479FNUTArYSr4YWJPzI9UEH2P-6-MYBmppUuUm1dKkOjaZX7z5290j_091mSCPBMwZzRaDisYuAbY2p5pU6-1_xX8DeTawSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940593261</pqid></control><display><type>article</type><title>Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Anderson, Edward N. ; Wharton, Kristi A.</creator><creatorcontrib>Anderson, Edward N. ; Wharton, Kristi A.</creatorcontrib><description>The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer–mediated wing vein patterning but not for Gbb15–Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.793513</identifier><identifier>PMID: 28924042</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activin Receptors, Type II - genetics ; Activin Receptors, Type II - metabolism ; Animals ; Body Patterning - physiology ; bone morphogenetic protein (BMP) ; cell signaling ; Cells, Cultured ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Gene Expression Regulation, Developmental ; Glass bottom boat (Gbb) ; Ligands ; O-GlcNAcylation ; prodomain ; proprotein convertase ; Proprotein Convertases - metabolism ; protein processing ; Pupa - genetics ; Pupa - growth & development ; Pupa - metabolism ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Signal Transduction ; Transforming Growth Factor beta - genetics ; Transforming Growth Factor beta - metabolism ; transforming growth factor β (TGF-β) ; Wings, Animal - growth & development ; Wings, Animal - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-11, Vol.292 (47), p.19160-19178</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-24aaea08006f66c1261e0843c30694ea3f2ecc14261370006fa90307e9e9077d3</citedby><cites>FETCH-LOGICAL-c443t-24aaea08006f66c1261e0843c30694ea3f2ecc14261370006fa90307e9e9077d3</cites><orcidid>0000-0001-9625-4336 ; 0000-0002-2468-0851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702660/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702660/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28924042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Edward N.</creatorcontrib><creatorcontrib>Wharton, Kristi A.</creatorcontrib><title>Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer–mediated wing vein patterning but not for Gbb15–Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.</description><subject>Activin Receptors, Type II - genetics</subject><subject>Activin Receptors, Type II - metabolism</subject><subject>Animals</subject><subject>Body Patterning - physiology</subject><subject>bone morphogenetic protein (BMP)</subject><subject>cell signaling</subject><subject>Cells, Cultured</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Glass bottom boat (Gbb)</subject><subject>Ligands</subject><subject>O-GlcNAcylation</subject><subject>prodomain</subject><subject>proprotein convertase</subject><subject>Proprotein Convertases - metabolism</subject><subject>protein processing</subject><subject>Pupa - genetics</subject><subject>Pupa - growth & development</subject><subject>Pupa - metabolism</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Signal Transduction</subject><subject>Transforming Growth Factor beta - genetics</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>transforming growth factor β (TGF-β)</subject><subject>Wings, Animal - growth & development</subject><subject>Wings, Animal - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcFu1DAUtBCILgtnbsjHIjXb59ibrC9IpSoFqRUcQOJmOc7LrqvEDrYTxG_0i3G0pYIDvtgaj-eNZwh5zWDDoBbnd43Z3DJWb2rJt4w_ISsGO17k8_enZAVQskKW290JeRHjHeQlJHtOTsqdLAWIckXuL_qEwelkZ6SmRz3rPVLf0XRA2niHdPBhPPg9OkzW0DH4hNbR0_e3X96e0eumOVuwdjIYaW_32rWR_rTpQFsbk3Um0RZn7P04oEu6p92UMetdpJlKAxockw9ZAzsM6LLMS_Ks033EVw_7mnz7cPX18mNx8_n60-XFTWGE4KkohdaoYQdQdVVlWFkxhJ3ghkMlBWrelWgMExnnNSwsLYFDjRIl1HXL1-TdUXecmgFbk_0F3asx2EGHX8prq_69cfag9n5W2xrKqoIscPogEPyPCWNSg40G-1479FNUTArYSr4YWJPzI9UEH2P-6-MYBmppUuUm1dKkOjaZX7z5290j_091mSCPBMwZzRaDisYuAbY2p5pU6-1_xX8DeTawSA</recordid><startdate>20171124</startdate><enddate>20171124</enddate><creator>Anderson, Edward N.</creator><creator>Wharton, Kristi A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9625-4336</orcidid><orcidid>https://orcid.org/0000-0002-2468-0851</orcidid></search><sort><creationdate>20171124</creationdate><title>Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences</title><author>Anderson, Edward N. ; Wharton, Kristi A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-24aaea08006f66c1261e0843c30694ea3f2ecc14261370006fa90307e9e9077d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activin Receptors, Type II - genetics</topic><topic>Activin Receptors, Type II - metabolism</topic><topic>Animals</topic><topic>Body Patterning - physiology</topic><topic>bone morphogenetic protein (BMP)</topic><topic>cell signaling</topic><topic>Cells, Cultured</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Glass bottom boat (Gbb)</topic><topic>Ligands</topic><topic>O-GlcNAcylation</topic><topic>prodomain</topic><topic>proprotein convertase</topic><topic>Proprotein Convertases - metabolism</topic><topic>protein processing</topic><topic>Pupa - genetics</topic><topic>Pupa - growth & development</topic><topic>Pupa - metabolism</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Signal Transduction</topic><topic>Transforming Growth Factor beta - genetics</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>transforming growth factor β (TGF-β)</topic><topic>Wings, Animal - growth & development</topic><topic>Wings, Animal - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Edward N.</creatorcontrib><creatorcontrib>Wharton, Kristi A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Edward N.</au><au>Wharton, Kristi A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-11-24</date><risdate>2017</risdate><volume>292</volume><issue>47</issue><spage>19160</spage><epage>19178</epage><pages>19160-19178</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer–mediated wing vein patterning but not for Gbb15–Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28924042</pmid><doi>10.1074/jbc.M117.793513</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9625-4336</orcidid><orcidid>https://orcid.org/0000-0002-2468-0851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-11, Vol.292 (47), p.19160-19178 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5702660 |
source | PubMed (Medline); MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Activin Receptors, Type II - genetics Activin Receptors, Type II - metabolism Animals Body Patterning - physiology bone morphogenetic protein (BMP) cell signaling Cells, Cultured Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Gene Expression Regulation, Developmental Glass bottom boat (Gbb) Ligands O-GlcNAcylation prodomain proprotein convertase Proprotein Convertases - metabolism protein processing Pupa - genetics Pupa - growth & development Pupa - metabolism Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Signal Transduction Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism transforming growth factor β (TGF-β) Wings, Animal - growth & development Wings, Animal - metabolism |
title | Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20cleavage%20of%20the%20bone%20morphogenetic%20protein%20(BMP),%20Gbb,%20produces%20ligands%20with%20distinct%20developmental%20functions%20and%20receptor%20preferences&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Anderson,%20Edward%20N.&rft.date=2017-11-24&rft.volume=292&rft.issue=47&rft.spage=19160&rft.epage=19178&rft.pages=19160-19178&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.793513&rft_dat=%3Cproquest_pubme%3E1940593261%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940593261&rft_id=info:pmid/28924042&rft_els_id=S0021925820328908&rfr_iscdi=true |