Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity

Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.16292-16, Article 16292
Hauptverfasser: Hansen, Simon, Stüber, Jakob C., Ernst, Patrick, Koch, Alexander, Bojar, Daniel, Batyuk, Alexander, Plückthun, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 16292
container_title Scientific reports
container_volume 7
creator Hansen, Simon
Stüber, Jakob C.
Ernst, Patrick
Koch, Alexander
Bojar, Daniel
Batyuk, Alexander
Plückthun, Andreas
description Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. They can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.
doi_str_mv 10.1038/s41598-017-15711-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5701241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968049077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f40d787033f3c9fddd75169fb82e8d41a0723aa1bccacf04164eb7f340cd29113</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMottT-ARcSdONmNCfJTCYbQWpbhYIuFNyF3Exyb8pMMiYZpf31zXVquQpmcwLnOe_5eBF6DuQNENa_zRxa2TcERAOtAGhuH6FjSnjbUEbp44P_ETrN-ZrU11LJQT5FR1SC6Dpoj9H3Dzb7bcA6DFjP8-iNLj6GjKPDGptRTzN2MeHLZG3AF-MSk83GhoK_pFisD_iXLzs8exOnOOqEtXM--HLzDD1xesz29D6eoG8X51_PPjZXny8_nb2_akxLoDSOk0H0gjDmmJFuGAbRQifdpqe2HzhoIijTGjbGaOMIh47bjXCMEzPULYCdoHer7rxsJjvsR0t6VHPyk043Kmqv_s4Ev1Pb-FO1ggDle4GXq0DMxatsfLFmZ2II1hQF9V6CyQq9vu-S4o_F5qImX88wjjrYuGQFspOSApGsoq_-Qa_jkkK9wZ7qCZdEiErRlTIp5pyse5gYiNobrFaDVTVY_TZY3daiF4e7PpT8sbMCbAVyTYWtTQe9_y97B5rzseU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968049077</pqid></control><display><type>article</type><title>Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hansen, Simon ; Stüber, Jakob C. ; Ernst, Patrick ; Koch, Alexander ; Bojar, Daniel ; Batyuk, Alexander ; Plückthun, Andreas</creator><creatorcontrib>Hansen, Simon ; Stüber, Jakob C. ; Ernst, Patrick ; Koch, Alexander ; Bojar, Daniel ; Batyuk, Alexander ; Plückthun, Andreas ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. They can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-15711-z</identifier><identifier>PMID: 29176615</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1888/2249 ; 631/45/470 ; 631/45/535/1266 ; 631/61/338/469 ; Affinity ; Ankyrin Repeat - genetics ; Ankyrin Repeat - physiology ; Ankyrins ; BASIC BIOLOGICAL SCIENCES ; Binders ; Cell fusion ; Computer applications ; Design ; E coli ; Epitopes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Flow Cytometry ; Fluorescent proteins ; Green fluorescent protein ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humanities and Social Sciences ; Immobilization ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ligands ; multidisciplinary ; Protein design ; Protein folding ; Protein purification ; Protein Structure, Secondary ; Proteins ; Reagents ; Science ; Science (multidisciplinary) ; Surface plasmon resonance ; X-ray crystallography</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.16292-16, Article 16292</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f40d787033f3c9fddd75169fb82e8d41a0723aa1bccacf04164eb7f340cd29113</citedby><cites>FETCH-LOGICAL-c501t-f40d787033f3c9fddd75169fb82e8d41a0723aa1bccacf04164eb7f340cd29113</cites><orcidid>0000-0002-3406-0664 ; 0000-0002-9393-2880 ; 0000-0003-4191-5306 ; 0000000234060664 ; 0000000293932880 ; 0000000341915306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701241/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29176615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1419739$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Simon</creatorcontrib><creatorcontrib>Stüber, Jakob C.</creatorcontrib><creatorcontrib>Ernst, Patrick</creatorcontrib><creatorcontrib>Koch, Alexander</creatorcontrib><creatorcontrib>Bojar, Daniel</creatorcontrib><creatorcontrib>Batyuk, Alexander</creatorcontrib><creatorcontrib>Plückthun, Andreas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. They can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.</description><subject>631/1647/1888/2249</subject><subject>631/45/470</subject><subject>631/45/535/1266</subject><subject>631/61/338/469</subject><subject>Affinity</subject><subject>Ankyrin Repeat - genetics</subject><subject>Ankyrin Repeat - physiology</subject><subject>Ankyrins</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binders</subject><subject>Cell fusion</subject><subject>Computer applications</subject><subject>Design</subject><subject>E coli</subject><subject>Epitopes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Flow Cytometry</subject><subject>Fluorescent proteins</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Immobilization</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ligands</subject><subject>multidisciplinary</subject><subject>Protein design</subject><subject>Protein folding</subject><subject>Protein purification</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Reagents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface plasmon resonance</subject><subject>X-ray crystallography</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhoMottT-ARcSdONmNCfJTCYbQWpbhYIuFNyF3Exyb8pMMiYZpf31zXVquQpmcwLnOe_5eBF6DuQNENa_zRxa2TcERAOtAGhuH6FjSnjbUEbp44P_ETrN-ZrU11LJQT5FR1SC6Dpoj9H3Dzb7bcA6DFjP8-iNLj6GjKPDGptRTzN2MeHLZG3AF-MSk83GhoK_pFisD_iXLzs8exOnOOqEtXM--HLzDD1xesz29D6eoG8X51_PPjZXny8_nb2_akxLoDSOk0H0gjDmmJFuGAbRQifdpqe2HzhoIijTGjbGaOMIh47bjXCMEzPULYCdoHer7rxsJjvsR0t6VHPyk043Kmqv_s4Ev1Pb-FO1ggDle4GXq0DMxatsfLFmZ2II1hQF9V6CyQq9vu-S4o_F5qImX88wjjrYuGQFspOSApGsoq_-Qa_jkkK9wZ7qCZdEiErRlTIp5pyse5gYiNobrFaDVTVY_TZY3daiF4e7PpT8sbMCbAVyTYWtTQe9_y97B5rzseU</recordid><startdate>20171124</startdate><enddate>20171124</enddate><creator>Hansen, Simon</creator><creator>Stüber, Jakob C.</creator><creator>Ernst, Patrick</creator><creator>Koch, Alexander</creator><creator>Bojar, Daniel</creator><creator>Batyuk, Alexander</creator><creator>Plückthun, Andreas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3406-0664</orcidid><orcidid>https://orcid.org/0000-0002-9393-2880</orcidid><orcidid>https://orcid.org/0000-0003-4191-5306</orcidid><orcidid>https://orcid.org/0000000234060664</orcidid><orcidid>https://orcid.org/0000000293932880</orcidid><orcidid>https://orcid.org/0000000341915306</orcidid></search><sort><creationdate>20171124</creationdate><title>Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity</title><author>Hansen, Simon ; Stüber, Jakob C. ; Ernst, Patrick ; Koch, Alexander ; Bojar, Daniel ; Batyuk, Alexander ; Plückthun, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f40d787033f3c9fddd75169fb82e8d41a0723aa1bccacf04164eb7f340cd29113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/1888/2249</topic><topic>631/45/470</topic><topic>631/45/535/1266</topic><topic>631/61/338/469</topic><topic>Affinity</topic><topic>Ankyrin Repeat - genetics</topic><topic>Ankyrin Repeat - physiology</topic><topic>Ankyrins</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binders</topic><topic>Cell fusion</topic><topic>Computer applications</topic><topic>Design</topic><topic>E coli</topic><topic>Epitopes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Flow Cytometry</topic><topic>Fluorescent proteins</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Immobilization</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ligands</topic><topic>multidisciplinary</topic><topic>Protein design</topic><topic>Protein folding</topic><topic>Protein purification</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Reagents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface plasmon resonance</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Simon</creatorcontrib><creatorcontrib>Stüber, Jakob C.</creatorcontrib><creatorcontrib>Ernst, Patrick</creatorcontrib><creatorcontrib>Koch, Alexander</creatorcontrib><creatorcontrib>Bojar, Daniel</creatorcontrib><creatorcontrib>Batyuk, Alexander</creatorcontrib><creatorcontrib>Plückthun, Andreas</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Simon</au><au>Stüber, Jakob C.</au><au>Ernst, Patrick</au><au>Koch, Alexander</au><au>Bojar, Daniel</au><au>Batyuk, Alexander</au><au>Plückthun, Andreas</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-24</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>16292</spage><epage>16</epage><pages>16292-16</pages><artnum>16292</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. They can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29176615</pmid><doi>10.1038/s41598-017-15711-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3406-0664</orcidid><orcidid>https://orcid.org/0000-0002-9393-2880</orcidid><orcidid>https://orcid.org/0000-0003-4191-5306</orcidid><orcidid>https://orcid.org/0000000234060664</orcidid><orcidid>https://orcid.org/0000000293932880</orcidid><orcidid>https://orcid.org/0000000341915306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.16292-16, Article 16292
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5701241
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/1647/1888/2249
631/45/470
631/45/535/1266
631/61/338/469
Affinity
Ankyrin Repeat - genetics
Ankyrin Repeat - physiology
Ankyrins
BASIC BIOLOGICAL SCIENCES
Binders
Cell fusion
Computer applications
Design
E coli
Epitopes
Escherichia coli - genetics
Escherichia coli - metabolism
Flow Cytometry
Fluorescent proteins
Green fluorescent protein
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humanities and Social Sciences
Immobilization
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ligands
multidisciplinary
Protein design
Protein folding
Protein purification
Protein Structure, Secondary
Proteins
Reagents
Science
Science (multidisciplinary)
Surface plasmon resonance
X-ray crystallography
title Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20applications%20of%20a%20clamp%20for%20Green%20Fluorescent%20Protein%20with%20picomolar%20affinity&rft.jtitle=Scientific%20reports&rft.au=Hansen,%20Simon&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-11-24&rft.volume=7&rft.issue=1&rft.spage=16292&rft.epage=16&rft.pages=16292-16&rft.artnum=16292&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-15711-z&rft_dat=%3Cproquest_pubme%3E1968049077%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968049077&rft_id=info:pmid/29176615&rfr_iscdi=true