Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii
Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irrevers...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2017-12, Vol.95 (6), p.579-591 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 591 |
---|---|
container_issue | 6 |
container_start_page | 579 |
container_title | Plant molecular biology |
container_volume | 95 |
creator | Rütgers, Mark Muranaka, Ligia Segatto Mühlhaus, Timo Sommer, Frederik Thoms, Sylvia Schurig, Juliane Willmund, Felix Schulz-Raffelt, Miriam Schroda, Michael |
description | Key message
We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat.
Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state.
Chlamydomonas reinhardtii
encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the
Volvocales
. HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress. |
doi_str_mv | 10.1007/s11103-017-0672-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959325735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</originalsourceid><addsrcrecordid>eNqFks9qFTEUxgdR7G31AdxIwI2bsfkzmUw2glxaKxRcqOuQySR3UjPJNcm0zMv4rGaYWqogrhI4v-87JydfVb1C8B2CkJ0nhBAkNUSshi3D9fKk2iHKSE0h7p5WO4haVjcNwifVaUo3EBYVaZ9XJ5hD3mDW7aqfX-Y-5SizTiAYkEcN1OhCDEcnUwZpks6BUctyHYP6Do4xZG19AhhfnF-CY7A-gxxWYZyCk711Ni9AJiBB1IfZyWxvNUh3NqsRmBA3M6mUs1OpBQ-sB_vRyWkZwhR8UcbSYJRxyNa-qJ4Z6ZJ-eX-eVd8uL77ur-rrzx8_7T9c14pCkuvetJhpSRFXvSIdwkRyA3mnMdJkoGgwpmdM6p7iputayYiSmmFODWIDM5ycVe833-PcT3pQ2pedOHGMZci4iCCt-LPi7SgO4VZQBiHnq8Hbe4MYfsw6ZTHZpLRz0uswJ4EhJV3Lm7b5L4o45QSXb6QFffMXehPm6MsmCtUy1mHGVkO0USqGlKI2D3MjKNagiC0oogRFrEERS9G8fvzgB8XvZBQAb0AqJX_Q8VHrf7r-AisEzUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967782774</pqid></control><display><type>article</type><title>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Rütgers, Mark ; Muranaka, Ligia Segatto ; Mühlhaus, Timo ; Sommer, Frederik ; Thoms, Sylvia ; Schurig, Juliane ; Willmund, Felix ; Schulz-Raffelt, Miriam ; Schroda, Michael</creator><creatorcontrib>Rütgers, Mark ; Muranaka, Ligia Segatto ; Mühlhaus, Timo ; Sommer, Frederik ; Thoms, Sylvia ; Schurig, Juliane ; Willmund, Felix ; Schulz-Raffelt, Miriam ; Schroda, Michael</creatorcontrib><description>Key message
We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat.
Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state.
Chlamydomonas reinhardtii
encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the
Volvocales
. HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-017-0672-y</identifier><identifier>PMID: 29094278</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acclimation ; Acclimatization ; Aggregates ; algorithms ; Amino Acid Sequence ; Antibodies - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Chaperones ; Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chloroplasts ; Chloroplasts - metabolism ; ClpB protein ; Filtration ; Gene duplication ; Genes, Plant ; Heat ; Heat shock proteins ; Heat stress ; Heat tolerance ; Heat-Shock Proteins, Small - chemistry ; Heat-Shock Proteins, Small - metabolism ; Heat-Shock Response ; Hot Temperature ; Hsp70 protein ; Immunoprecipitation ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Molecular Weight ; Phylogeny ; Plant Pathology ; Plant Sciences ; precipitin tests ; Protein folding ; protein unfolding ; Proteins ; Reproducibility of Results ; Small heat shock proteins ; Substrate Specificity ; Substrates ; Thermal stress</subject><ispartof>Plant molecular biology, 2017-12, Vol.95 (6), p.579-591</ispartof><rights>The Author(s) 2017</rights><rights>Plant Molecular Biology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</citedby><cites>FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</cites><orcidid>0000-0003-3599-4669 ; 0000-0001-6872-0483 ; 0000-0002-6604-2778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-017-0672-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-017-0672-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29094278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rütgers, Mark</creatorcontrib><creatorcontrib>Muranaka, Ligia Segatto</creatorcontrib><creatorcontrib>Mühlhaus, Timo</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Thoms, Sylvia</creatorcontrib><creatorcontrib>Schurig, Juliane</creatorcontrib><creatorcontrib>Willmund, Felix</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><title>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message
We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat.
Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state.
Chlamydomonas reinhardtii
encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the
Volvocales
. HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Aggregates</subject><subject>algorithms</subject><subject>Amino Acid Sequence</subject><subject>Antibodies - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chaperones</subject><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>ClpB protein</subject><subject>Filtration</subject><subject>Gene duplication</subject><subject>Genes, Plant</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Proteins, Small - chemistry</subject><subject>Heat-Shock Proteins, Small - metabolism</subject><subject>Heat-Shock Response</subject><subject>Hot Temperature</subject><subject>Hsp70 protein</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Molecular Weight</subject><subject>Phylogeny</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>precipitin tests</subject><subject>Protein folding</subject><subject>protein unfolding</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Small heat shock proteins</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermal stress</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks9qFTEUxgdR7G31AdxIwI2bsfkzmUw2glxaKxRcqOuQySR3UjPJNcm0zMv4rGaYWqogrhI4v-87JydfVb1C8B2CkJ0nhBAkNUSshi3D9fKk2iHKSE0h7p5WO4haVjcNwifVaUo3EBYVaZ9XJ5hD3mDW7aqfX-Y-5SizTiAYkEcN1OhCDEcnUwZpks6BUctyHYP6Do4xZG19AhhfnF-CY7A-gxxWYZyCk711Ni9AJiBB1IfZyWxvNUh3NqsRmBA3M6mUs1OpBQ-sB_vRyWkZwhR8UcbSYJRxyNa-qJ4Z6ZJ-eX-eVd8uL77ur-rrzx8_7T9c14pCkuvetJhpSRFXvSIdwkRyA3mnMdJkoGgwpmdM6p7iputayYiSmmFODWIDM5ycVe833-PcT3pQ2pedOHGMZci4iCCt-LPi7SgO4VZQBiHnq8Hbe4MYfsw6ZTHZpLRz0uswJ4EhJV3Lm7b5L4o45QSXb6QFffMXehPm6MsmCtUy1mHGVkO0USqGlKI2D3MjKNagiC0oogRFrEERS9G8fvzgB8XvZBQAb0AqJX_Q8VHrf7r-AisEzUc</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Rütgers, Mark</creator><creator>Muranaka, Ligia Segatto</creator><creator>Mühlhaus, Timo</creator><creator>Sommer, Frederik</creator><creator>Thoms, Sylvia</creator><creator>Schurig, Juliane</creator><creator>Willmund, Felix</creator><creator>Schulz-Raffelt, Miriam</creator><creator>Schroda, Michael</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3599-4669</orcidid><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-6604-2778</orcidid></search><sort><creationdate>20171201</creationdate><title>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</title><author>Rütgers, Mark ; Muranaka, Ligia Segatto ; Mühlhaus, Timo ; Sommer, Frederik ; Thoms, Sylvia ; Schurig, Juliane ; Willmund, Felix ; Schulz-Raffelt, Miriam ; Schroda, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Aggregates</topic><topic>algorithms</topic><topic>Amino Acid Sequence</topic><topic>Antibodies - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chaperones</topic><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>ClpB protein</topic><topic>Filtration</topic><topic>Gene duplication</topic><topic>Genes, Plant</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Proteins, Small - chemistry</topic><topic>Heat-Shock Proteins, Small - metabolism</topic><topic>Heat-Shock Response</topic><topic>Hot Temperature</topic><topic>Hsp70 protein</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Molecular Weight</topic><topic>Phylogeny</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>precipitin tests</topic><topic>Protein folding</topic><topic>protein unfolding</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Small heat shock proteins</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rütgers, Mark</creatorcontrib><creatorcontrib>Muranaka, Ligia Segatto</creatorcontrib><creatorcontrib>Mühlhaus, Timo</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Thoms, Sylvia</creatorcontrib><creatorcontrib>Schurig, Juliane</creatorcontrib><creatorcontrib>Willmund, Felix</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rütgers, Mark</au><au>Muranaka, Ligia Segatto</au><au>Mühlhaus, Timo</au><au>Sommer, Frederik</au><au>Thoms, Sylvia</au><au>Schurig, Juliane</au><au>Willmund, Felix</au><au>Schulz-Raffelt, Miriam</au><au>Schroda, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>95</volume><issue>6</issue><spage>579</spage><epage>591</epage><pages>579-591</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message
We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat.
Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state.
Chlamydomonas reinhardtii
encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the
Volvocales
. HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29094278</pmid><doi>10.1007/s11103-017-0672-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3599-4669</orcidid><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-6604-2778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2017-12, Vol.95 (6), p.579-591 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700999 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acclimation Acclimatization Aggregates algorithms Amino Acid Sequence Antibodies - metabolism Biochemistry Biomedical and Life Sciences Chaperones Chlamydomonas Chlamydomonas reinhardtii Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Chloroplasts Chloroplasts - metabolism ClpB protein Filtration Gene duplication Genes, Plant Heat Heat shock proteins Heat stress Heat tolerance Heat-Shock Proteins, Small - chemistry Heat-Shock Proteins, Small - metabolism Heat-Shock Response Hot Temperature Hsp70 protein Immunoprecipitation Life Sciences Mass spectrometry Mass spectroscopy Molecular Weight Phylogeny Plant Pathology Plant Sciences precipitin tests Protein folding protein unfolding Proteins Reproducibility of Results Small heat shock proteins Substrate Specificity Substrates Thermal stress |
title | Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrates%20of%20the%20chloroplast%20small%20heat%20shock%20proteins%2022E/F%20point%20to%20thermolability%20as%20a%20regulative%20switch%20for%20heat%20acclimation%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=Plant%20molecular%20biology&rft.au=R%C3%BCtgers,%20Mark&rft.date=2017-12-01&rft.volume=95&rft.issue=6&rft.spage=579&rft.epage=591&rft.pages=579-591&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-017-0672-y&rft_dat=%3Cproquest_pubme%3E1959325735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967782774&rft_id=info:pmid/29094278&rfr_iscdi=true |