Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii

Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irrevers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2017-12, Vol.95 (6), p.579-591
Hauptverfasser: Rütgers, Mark, Muranaka, Ligia Segatto, Mühlhaus, Timo, Sommer, Frederik, Thoms, Sylvia, Schurig, Juliane, Willmund, Felix, Schulz-Raffelt, Miriam, Schroda, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 6
container_start_page 579
container_title Plant molecular biology
container_volume 95
creator Rütgers, Mark
Muranaka, Ligia Segatto
Mühlhaus, Timo
Sommer, Frederik
Thoms, Sylvia
Schurig, Juliane
Willmund, Felix
Schulz-Raffelt, Miriam
Schroda, Michael
description Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state. Chlamydomonas reinhardtii encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the Volvocales . HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.
doi_str_mv 10.1007/s11103-017-0672-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959325735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</originalsourceid><addsrcrecordid>eNqFks9qFTEUxgdR7G31AdxIwI2bsfkzmUw2glxaKxRcqOuQySR3UjPJNcm0zMv4rGaYWqogrhI4v-87JydfVb1C8B2CkJ0nhBAkNUSshi3D9fKk2iHKSE0h7p5WO4haVjcNwifVaUo3EBYVaZ9XJ5hD3mDW7aqfX-Y-5SizTiAYkEcN1OhCDEcnUwZpks6BUctyHYP6Do4xZG19AhhfnF-CY7A-gxxWYZyCk711Ni9AJiBB1IfZyWxvNUh3NqsRmBA3M6mUs1OpBQ-sB_vRyWkZwhR8UcbSYJRxyNa-qJ4Z6ZJ-eX-eVd8uL77ur-rrzx8_7T9c14pCkuvetJhpSRFXvSIdwkRyA3mnMdJkoGgwpmdM6p7iputayYiSmmFODWIDM5ycVe833-PcT3pQ2pedOHGMZci4iCCt-LPi7SgO4VZQBiHnq8Hbe4MYfsw6ZTHZpLRz0uswJ4EhJV3Lm7b5L4o45QSXb6QFffMXehPm6MsmCtUy1mHGVkO0USqGlKI2D3MjKNagiC0oogRFrEERS9G8fvzgB8XvZBQAb0AqJX_Q8VHrf7r-AisEzUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967782774</pqid></control><display><type>article</type><title>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Rütgers, Mark ; Muranaka, Ligia Segatto ; Mühlhaus, Timo ; Sommer, Frederik ; Thoms, Sylvia ; Schurig, Juliane ; Willmund, Felix ; Schulz-Raffelt, Miriam ; Schroda, Michael</creator><creatorcontrib>Rütgers, Mark ; Muranaka, Ligia Segatto ; Mühlhaus, Timo ; Sommer, Frederik ; Thoms, Sylvia ; Schurig, Juliane ; Willmund, Felix ; Schulz-Raffelt, Miriam ; Schroda, Michael</creatorcontrib><description>Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state. Chlamydomonas reinhardtii encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the Volvocales . HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-017-0672-y</identifier><identifier>PMID: 29094278</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acclimation ; Acclimatization ; Aggregates ; algorithms ; Amino Acid Sequence ; Antibodies - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Chaperones ; Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Chloroplasts ; Chloroplasts - metabolism ; ClpB protein ; Filtration ; Gene duplication ; Genes, Plant ; Heat ; Heat shock proteins ; Heat stress ; Heat tolerance ; Heat-Shock Proteins, Small - chemistry ; Heat-Shock Proteins, Small - metabolism ; Heat-Shock Response ; Hot Temperature ; Hsp70 protein ; Immunoprecipitation ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Molecular Weight ; Phylogeny ; Plant Pathology ; Plant Sciences ; precipitin tests ; Protein folding ; protein unfolding ; Proteins ; Reproducibility of Results ; Small heat shock proteins ; Substrate Specificity ; Substrates ; Thermal stress</subject><ispartof>Plant molecular biology, 2017-12, Vol.95 (6), p.579-591</ispartof><rights>The Author(s) 2017</rights><rights>Plant Molecular Biology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</citedby><cites>FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</cites><orcidid>0000-0003-3599-4669 ; 0000-0001-6872-0483 ; 0000-0002-6604-2778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-017-0672-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-017-0672-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29094278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rütgers, Mark</creatorcontrib><creatorcontrib>Muranaka, Ligia Segatto</creatorcontrib><creatorcontrib>Mühlhaus, Timo</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Thoms, Sylvia</creatorcontrib><creatorcontrib>Schurig, Juliane</creatorcontrib><creatorcontrib>Willmund, Felix</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><title>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state. Chlamydomonas reinhardtii encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the Volvocales . HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Aggregates</subject><subject>algorithms</subject><subject>Amino Acid Sequence</subject><subject>Antibodies - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chaperones</subject><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>ClpB protein</subject><subject>Filtration</subject><subject>Gene duplication</subject><subject>Genes, Plant</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Proteins, Small - chemistry</subject><subject>Heat-Shock Proteins, Small - metabolism</subject><subject>Heat-Shock Response</subject><subject>Hot Temperature</subject><subject>Hsp70 protein</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Molecular Weight</subject><subject>Phylogeny</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>precipitin tests</subject><subject>Protein folding</subject><subject>protein unfolding</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Small heat shock proteins</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermal stress</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks9qFTEUxgdR7G31AdxIwI2bsfkzmUw2glxaKxRcqOuQySR3UjPJNcm0zMv4rGaYWqogrhI4v-87JydfVb1C8B2CkJ0nhBAkNUSshi3D9fKk2iHKSE0h7p5WO4haVjcNwifVaUo3EBYVaZ9XJ5hD3mDW7aqfX-Y-5SizTiAYkEcN1OhCDEcnUwZpks6BUctyHYP6Do4xZG19AhhfnF-CY7A-gxxWYZyCk711Ni9AJiBB1IfZyWxvNUh3NqsRmBA3M6mUs1OpBQ-sB_vRyWkZwhR8UcbSYJRxyNa-qJ4Z6ZJ-eX-eVd8uL77ur-rrzx8_7T9c14pCkuvetJhpSRFXvSIdwkRyA3mnMdJkoGgwpmdM6p7iputayYiSmmFODWIDM5ycVe833-PcT3pQ2pedOHGMZci4iCCt-LPi7SgO4VZQBiHnq8Hbe4MYfsw6ZTHZpLRz0uswJ4EhJV3Lm7b5L4o45QSXb6QFffMXehPm6MsmCtUy1mHGVkO0USqGlKI2D3MjKNagiC0oogRFrEERS9G8fvzgB8XvZBQAb0AqJX_Q8VHrf7r-AisEzUc</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Rütgers, Mark</creator><creator>Muranaka, Ligia Segatto</creator><creator>Mühlhaus, Timo</creator><creator>Sommer, Frederik</creator><creator>Thoms, Sylvia</creator><creator>Schurig, Juliane</creator><creator>Willmund, Felix</creator><creator>Schulz-Raffelt, Miriam</creator><creator>Schroda, Michael</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3599-4669</orcidid><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-6604-2778</orcidid></search><sort><creationdate>20171201</creationdate><title>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</title><author>Rütgers, Mark ; Muranaka, Ligia Segatto ; Mühlhaus, Timo ; Sommer, Frederik ; Thoms, Sylvia ; Schurig, Juliane ; Willmund, Felix ; Schulz-Raffelt, Miriam ; Schroda, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-bf627ea519cbc38123a9f098e21e3d51dffb77aeb524886a73cae7295f17d7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Aggregates</topic><topic>algorithms</topic><topic>Amino Acid Sequence</topic><topic>Antibodies - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chaperones</topic><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>ClpB protein</topic><topic>Filtration</topic><topic>Gene duplication</topic><topic>Genes, Plant</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Proteins, Small - chemistry</topic><topic>Heat-Shock Proteins, Small - metabolism</topic><topic>Heat-Shock Response</topic><topic>Hot Temperature</topic><topic>Hsp70 protein</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Molecular Weight</topic><topic>Phylogeny</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>precipitin tests</topic><topic>Protein folding</topic><topic>protein unfolding</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Small heat shock proteins</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rütgers, Mark</creatorcontrib><creatorcontrib>Muranaka, Ligia Segatto</creatorcontrib><creatorcontrib>Mühlhaus, Timo</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Thoms, Sylvia</creatorcontrib><creatorcontrib>Schurig, Juliane</creatorcontrib><creatorcontrib>Willmund, Felix</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rütgers, Mark</au><au>Muranaka, Ligia Segatto</au><au>Mühlhaus, Timo</au><au>Sommer, Frederik</au><au>Thoms, Sylvia</au><au>Schurig, Juliane</au><au>Willmund, Felix</au><au>Schulz-Raffelt, Miriam</au><au>Schroda, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>95</volume><issue>6</issue><spage>579</spage><epage>591</epage><pages>579-591</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state. Chlamydomonas reinhardtii encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the Volvocales . HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29094278</pmid><doi>10.1007/s11103-017-0672-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3599-4669</orcidid><orcidid>https://orcid.org/0000-0001-6872-0483</orcidid><orcidid>https://orcid.org/0000-0002-6604-2778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2017-12, Vol.95 (6), p.579-591
issn 0167-4412
1573-5028
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700999
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Acclimation
Acclimatization
Aggregates
algorithms
Amino Acid Sequence
Antibodies - metabolism
Biochemistry
Biomedical and Life Sciences
Chaperones
Chlamydomonas
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - metabolism
Chloroplasts
Chloroplasts - metabolism
ClpB protein
Filtration
Gene duplication
Genes, Plant
Heat
Heat shock proteins
Heat stress
Heat tolerance
Heat-Shock Proteins, Small - chemistry
Heat-Shock Proteins, Small - metabolism
Heat-Shock Response
Hot Temperature
Hsp70 protein
Immunoprecipitation
Life Sciences
Mass spectrometry
Mass spectroscopy
Molecular Weight
Phylogeny
Plant Pathology
Plant Sciences
precipitin tests
Protein folding
protein unfolding
Proteins
Reproducibility of Results
Small heat shock proteins
Substrate Specificity
Substrates
Thermal stress
title Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrates%20of%20the%20chloroplast%20small%20heat%20shock%20proteins%2022E/F%20point%20to%20thermolability%20as%20a%20regulative%20switch%20for%20heat%20acclimation%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=Plant%20molecular%20biology&rft.au=R%C3%BCtgers,%20Mark&rft.date=2017-12-01&rft.volume=95&rft.issue=6&rft.spage=579&rft.epage=591&rft.pages=579-591&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-017-0672-y&rft_dat=%3Cproquest_pubme%3E1959325735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967782774&rft_id=info:pmid/29094278&rfr_iscdi=true