Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation

N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plastici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2017-11, Vol.113 (10), p.2236-2248
Hauptverfasser: Iacobucci, Gary J., Popescu, Gabriela K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2248
container_issue 10
container_start_page 2236
container_title Biophysical journal
container_volume 113
creator Iacobucci, Gary J.
Popescu, Gabriela K.
description N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.
doi_str_mv 10.1016/j.bpj.2017.06.035
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349517306859</els_id><sourcerecordid>1920196309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-bd6a8d480c2b0b614a8fd50722fab9d60a9ab7e979c2f704eb9c0d73108595813</originalsourceid><addsrcrecordid>eNp9UdFK5DAUDaLorLsf4FsfBWm9SZu0QRBkdHVAV5Hd55Amt5qh09SkM7B_b3RE8MWn-3DPOffccwg5olBQoOJ0WbTjsmBA6wJEASXfITPKK5YDNGKXzABA5GUl-QH5EeMSgDIOdJ8csKamTFQwI4tHjM7iMGVz3a-8XfduyB6CW2HM_txdXmSPaHCcfIhZ50MCsZP8Ekcc3jmLQZvJbfTk_PCT7HW6j_jrYx6Sf7-v_s5v8tv768X84jY3JW-mvLVCN7ZqwLAWWkEr3XSWQ81Yp1tpBWip2xplLQ3raqiwlQZsXVJouOQNLQ_J-VZ3XLcrtCb5CLpXY_Ksw3_ltVNfN4N7Vk9-o3gNkP5PAscfAsG_rDFOauWiwb7XA_p1VFSmRKUoQSYo3UJN8DEG7D7PUFBvFailShWotwoUCJUqSJyzLQdTCBuHQUXjcDBoXUAzKevdN-xXGFmNKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920196309</pqid></control><display><type>article</type><title>Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation</title><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Iacobucci, Gary J. ; Popescu, Gabriela K.</creator><creatorcontrib>Iacobucci, Gary J. ; Popescu, Gabriela K.</creatorcontrib><description>N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2017.06.035</identifier><identifier>PMID: 28712640</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Biophysical journal, 2017-11, Vol.113 (10), p.2236-2248</ispartof><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-bd6a8d480c2b0b614a8fd50722fab9d60a9ab7e979c2f704eb9c0d73108595813</citedby><cites>FETCH-LOGICAL-c358t-bd6a8d480c2b0b614a8fd50722fab9d60a9ab7e979c2f704eb9c0d73108595813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700250/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2017.06.035$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45994,53790,53792</link.rule.ids></links><search><creatorcontrib>Iacobucci, Gary J.</creatorcontrib><creatorcontrib>Popescu, Gabriela K.</creatorcontrib><title>Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation</title><title>Biophysical journal</title><description>N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UdFK5DAUDaLorLsf4FsfBWm9SZu0QRBkdHVAV5Hd55Amt5qh09SkM7B_b3RE8MWn-3DPOffccwg5olBQoOJ0WbTjsmBA6wJEASXfITPKK5YDNGKXzABA5GUl-QH5EeMSgDIOdJ8csKamTFQwI4tHjM7iMGVz3a-8XfduyB6CW2HM_txdXmSPaHCcfIhZ50MCsZP8Ekcc3jmLQZvJbfTk_PCT7HW6j_jrYx6Sf7-v_s5v8tv768X84jY3JW-mvLVCN7ZqwLAWWkEr3XSWQ81Yp1tpBWip2xplLQ3raqiwlQZsXVJouOQNLQ_J-VZ3XLcrtCb5CLpXY_Ksw3_ltVNfN4N7Vk9-o3gNkP5PAscfAsG_rDFOauWiwb7XA_p1VFSmRKUoQSYo3UJN8DEG7D7PUFBvFailShWotwoUCJUqSJyzLQdTCBuHQUXjcDBoXUAzKevdN-xXGFmNKg</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Iacobucci, Gary J.</creator><creator>Popescu, Gabriela K.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171121</creationdate><title>Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation</title><author>Iacobucci, Gary J. ; Popescu, Gabriela K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-bd6a8d480c2b0b614a8fd50722fab9d60a9ab7e979c2f704eb9c0d73108595813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacobucci, Gary J.</creatorcontrib><creatorcontrib>Popescu, Gabriela K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacobucci, Gary J.</au><au>Popescu, Gabriela K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation</atitle><jtitle>Biophysical journal</jtitle><date>2017-11-21</date><risdate>2017</risdate><volume>113</volume><issue>10</issue><spage>2236</spage><epage>2248</epage><pages>2236-2248</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.</abstract><pub>Elsevier Inc</pub><pmid>28712640</pmid><doi>10.1016/j.bpj.2017.06.035</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2017-11, Vol.113 (10), p.2236-2248
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5700250
source Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
title Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resident%20Calmodulin%20Primes%20NMDA%20Receptors%20for%20Ca2+-Dependent%20Inactivation&rft.jtitle=Biophysical%20journal&rft.au=Iacobucci,%20Gary%20J.&rft.date=2017-11-21&rft.volume=113&rft.issue=10&rft.spage=2236&rft.epage=2248&rft.pages=2236-2248&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2017.06.035&rft_dat=%3Cproquest_pubme%3E1920196309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920196309&rft_id=info:pmid/28712640&rft_els_id=S0006349517306859&rfr_iscdi=true