Structure of the hexagonal surface layer on Caulobacter crescentus cells
Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea 1 – 5 . S-layers protect cells from the outside, provide mechan...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2017-04, Vol.2 (7), p.17059-17059, Article 17059 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17059 |
---|---|
container_issue | 7 |
container_start_page | 17059 |
container_title | Nature microbiology |
container_volume | 2 |
creator | Bharat, Tanmay A. M. Kureisaite-Ciziene, Danguole Hardy, Gail G. Yu, Ellen W. Devant, Jessica M. Hagen, Wim J. H. Brun, Yves V. Briggs, John A. G. Löwe, Jan |
description | Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea
1
–
5
. S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity.
In situ
structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified
Caulobacter crescentus
' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the
in vivo
S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca
2+
ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging.
The S-layer structure of
C. crescentus
is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions. |
doi_str_mv | 10.1038/nmicrobiol.2017.59 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2223802458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVqp_wIUMuHHTmtw8mtkIUtQKggt1HZI0aUemE00mYv-9M7Q-F66ScL-ce889CB0TPCaYyvNmVdkYTBXqMWAyGfNyBx0A5nLEYSJ2f9wH6CilZ4wxESCEFPtoAJIRSSUcoNlDG7Ntc3RF8EW7dMXSvetFaHRdpBy9tq6o9drFIjTFVOc6GG3b7mmjS9Y1bU6FdXWdDtGe13VyR9tziJ6urx6ns9Hd_c3t9PJuZNmEtSNnBXYCgDHg2gvpPTFGY8PmE1wSIj1wAcxoqktNLeFc4JJZ4NLzkhpD6BBdbHRfslm5eT9C1LV6idVKx7UKulK_K021VIvwprgoS8FoJ3C2FYjhNbvUqlWVegu6cSEnRaQsqeSc9ujpH_Q55NitJikAoBID47KjYEN1eaQUnf8ahmDVZ6W-s1J9VqqzMkQnP218fflMpgPoBkhdqVm4-N37H9kP0YGksw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223802458</pqid></control><display><type>article</type><title>Structure of the hexagonal surface layer on Caulobacter crescentus cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bharat, Tanmay A. M. ; Kureisaite-Ciziene, Danguole ; Hardy, Gail G. ; Yu, Ellen W. ; Devant, Jessica M. ; Hagen, Wim J. H. ; Brun, Yves V. ; Briggs, John A. G. ; Löwe, Jan</creator><creatorcontrib>Bharat, Tanmay A. M. ; Kureisaite-Ciziene, Danguole ; Hardy, Gail G. ; Yu, Ellen W. ; Devant, Jessica M. ; Hagen, Wim J. H. ; Brun, Yves V. ; Briggs, John A. G. ; Löwe, Jan</creatorcontrib><description>Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea
1
–
5
. S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity.
In situ
structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified
Caulobacter crescentus
' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the
in vivo
S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca
2+
ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging.
The S-layer structure of
C. crescentus
is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/nmicrobiol.2017.59</identifier><identifier>PMID: 28418382</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/326/41/2536 ; 631/326/88 ; 631/535/1258/1260 ; 631/535/1266 ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Proteins - chemistry ; Biomedical and Life Sciences ; Calcium ; Caulobacter crescentus ; Caulobacter crescentus - chemistry ; Crystallography ; Crystallography, X-Ray ; Electron Microscope Tomography ; Gram-negative bacteria ; Infectious Diseases ; Interfaces ; letter ; Life Sciences ; Medical Microbiology ; Membrane Glycoproteins - chemistry ; Membrane Glycoproteins - isolation & purification ; Membrane Glycoproteins - ultrastructure ; Microbiology ; Parasitology ; Pathogenicity ; Proteins ; Surface Properties ; Virology ; X-ray crystallography</subject><ispartof>Nature microbiology, 2017-04, Vol.2 (7), p.17059-17059, Article 17059</ispartof><rights>Macmillan Publishers Limited 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</citedby><cites>FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</cites><orcidid>0000-0002-0168-0277 ; 0000-0002-5218-6615 ; 0000-0001-6229-2692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmicrobiol.2017.59$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmicrobiol.2017.59$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28418382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bharat, Tanmay A. M.</creatorcontrib><creatorcontrib>Kureisaite-Ciziene, Danguole</creatorcontrib><creatorcontrib>Hardy, Gail G.</creatorcontrib><creatorcontrib>Yu, Ellen W.</creatorcontrib><creatorcontrib>Devant, Jessica M.</creatorcontrib><creatorcontrib>Hagen, Wim J. H.</creatorcontrib><creatorcontrib>Brun, Yves V.</creatorcontrib><creatorcontrib>Briggs, John A. G.</creatorcontrib><creatorcontrib>Löwe, Jan</creatorcontrib><title>Structure of the hexagonal surface layer on Caulobacter crescentus cells</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea
1
–
5
. S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity.
In situ
structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified
Caulobacter crescentus
' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the
in vivo
S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca
2+
ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging.
The S-layer structure of
C. crescentus
is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.</description><subject>101/28</subject><subject>631/326/41/2536</subject><subject>631/326/88</subject><subject>631/535/1258/1260</subject><subject>631/535/1266</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Proteins - chemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - chemistry</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Electron Microscope Tomography</subject><subject>Gram-negative bacteria</subject><subject>Infectious Diseases</subject><subject>Interfaces</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Membrane Glycoproteins - isolation & purification</subject><subject>Membrane Glycoproteins - ultrastructure</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Pathogenicity</subject><subject>Proteins</subject><subject>Surface Properties</subject><subject>Virology</subject><subject>X-ray crystallography</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMoVqp_wIUMuHHTmtw8mtkIUtQKggt1HZI0aUemE00mYv-9M7Q-F66ScL-ce889CB0TPCaYyvNmVdkYTBXqMWAyGfNyBx0A5nLEYSJ2f9wH6CilZ4wxESCEFPtoAJIRSSUcoNlDG7Ntc3RF8EW7dMXSvetFaHRdpBy9tq6o9drFIjTFVOc6GG3b7mmjS9Y1bU6FdXWdDtGe13VyR9tziJ6urx6ns9Hd_c3t9PJuZNmEtSNnBXYCgDHg2gvpPTFGY8PmE1wSIj1wAcxoqktNLeFc4JJZ4NLzkhpD6BBdbHRfslm5eT9C1LV6idVKx7UKulK_K021VIvwprgoS8FoJ3C2FYjhNbvUqlWVegu6cSEnRaQsqeSc9ujpH_Q55NitJikAoBID47KjYEN1eaQUnf8ahmDVZ6W-s1J9VqqzMkQnP218fflMpgPoBkhdqVm4-N37H9kP0YGksw</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Bharat, Tanmay A. M.</creator><creator>Kureisaite-Ciziene, Danguole</creator><creator>Hardy, Gail G.</creator><creator>Yu, Ellen W.</creator><creator>Devant, Jessica M.</creator><creator>Hagen, Wim J. H.</creator><creator>Brun, Yves V.</creator><creator>Briggs, John A. G.</creator><creator>Löwe, Jan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0168-0277</orcidid><orcidid>https://orcid.org/0000-0002-5218-6615</orcidid><orcidid>https://orcid.org/0000-0001-6229-2692</orcidid></search><sort><creationdate>20170418</creationdate><title>Structure of the hexagonal surface layer on Caulobacter crescentus cells</title><author>Bharat, Tanmay A. M. ; Kureisaite-Ciziene, Danguole ; Hardy, Gail G. ; Yu, Ellen W. ; Devant, Jessica M. ; Hagen, Wim J. H. ; Brun, Yves V. ; Briggs, John A. G. ; Löwe, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>101/28</topic><topic>631/326/41/2536</topic><topic>631/326/88</topic><topic>631/535/1258/1260</topic><topic>631/535/1266</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Proteins - chemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - chemistry</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Electron Microscope Tomography</topic><topic>Gram-negative bacteria</topic><topic>Infectious Diseases</topic><topic>Interfaces</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Membrane Glycoproteins - isolation & purification</topic><topic>Membrane Glycoproteins - ultrastructure</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Pathogenicity</topic><topic>Proteins</topic><topic>Surface Properties</topic><topic>Virology</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharat, Tanmay A. M.</creatorcontrib><creatorcontrib>Kureisaite-Ciziene, Danguole</creatorcontrib><creatorcontrib>Hardy, Gail G.</creatorcontrib><creatorcontrib>Yu, Ellen W.</creatorcontrib><creatorcontrib>Devant, Jessica M.</creatorcontrib><creatorcontrib>Hagen, Wim J. H.</creatorcontrib><creatorcontrib>Brun, Yves V.</creatorcontrib><creatorcontrib>Briggs, John A. G.</creatorcontrib><creatorcontrib>Löwe, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharat, Tanmay A. M.</au><au>Kureisaite-Ciziene, Danguole</au><au>Hardy, Gail G.</au><au>Yu, Ellen W.</au><au>Devant, Jessica M.</au><au>Hagen, Wim J. H.</au><au>Brun, Yves V.</au><au>Briggs, John A. G.</au><au>Löwe, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the hexagonal surface layer on Caulobacter crescentus cells</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>2</volume><issue>7</issue><spage>17059</spage><epage>17059</epage><pages>17059-17059</pages><artnum>17059</artnum><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea
1
–
5
. S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity.
In situ
structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified
Caulobacter crescentus
' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the
in vivo
S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca
2+
ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging.
The S-layer structure of
C. crescentus
is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28418382</pmid><doi>10.1038/nmicrobiol.2017.59</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0168-0277</orcidid><orcidid>https://orcid.org/0000-0002-5218-6615</orcidid><orcidid>https://orcid.org/0000-0001-6229-2692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2017-04, Vol.2 (7), p.17059-17059, Article 17059 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699643 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 101/28 631/326/41/2536 631/326/88 631/535/1258/1260 631/535/1266 Bacterial Outer Membrane Proteins - chemistry Bacterial Proteins - chemistry Biomedical and Life Sciences Calcium Caulobacter crescentus Caulobacter crescentus - chemistry Crystallography Crystallography, X-Ray Electron Microscope Tomography Gram-negative bacteria Infectious Diseases Interfaces letter Life Sciences Medical Microbiology Membrane Glycoproteins - chemistry Membrane Glycoproteins - isolation & purification Membrane Glycoproteins - ultrastructure Microbiology Parasitology Pathogenicity Proteins Surface Properties Virology X-ray crystallography |
title | Structure of the hexagonal surface layer on Caulobacter crescentus cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20hexagonal%20surface%20layer%20on%20Caulobacter%20crescentus%20cells&rft.jtitle=Nature%20microbiology&rft.au=Bharat,%20Tanmay%20A.%20M.&rft.date=2017-04-18&rft.volume=2&rft.issue=7&rft.spage=17059&rft.epage=17059&rft.pages=17059-17059&rft.artnum=17059&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/nmicrobiol.2017.59&rft_dat=%3Cproquest_pubme%3E2223802458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2223802458&rft_id=info:pmid/28418382&rfr_iscdi=true |