Structure of the hexagonal surface layer on Caulobacter crescentus cells

Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea 1 – 5 . S-layers protect cells from the outside, provide mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature microbiology 2017-04, Vol.2 (7), p.17059-17059, Article 17059
Hauptverfasser: Bharat, Tanmay A. M., Kureisaite-Ciziene, Danguole, Hardy, Gail G., Yu, Ellen W., Devant, Jessica M., Hagen, Wim J. H., Brun, Yves V., Briggs, John A. G., Löwe, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17059
container_issue 7
container_start_page 17059
container_title Nature microbiology
container_volume 2
creator Bharat, Tanmay A. M.
Kureisaite-Ciziene, Danguole
Hardy, Gail G.
Yu, Ellen W.
Devant, Jessica M.
Hagen, Wim J. H.
Brun, Yves V.
Briggs, John A. G.
Löwe, Jan
description Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea 1 – 5 . S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity. In situ structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified Caulobacter crescentus ' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the in vivo S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca 2+ ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging. The S-layer structure of C. crescentus is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.
doi_str_mv 10.1038/nmicrobiol.2017.59
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2223802458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVqp_wIUMuHHTmtw8mtkIUtQKggt1HZI0aUemE00mYv-9M7Q-F66ScL-ce889CB0TPCaYyvNmVdkYTBXqMWAyGfNyBx0A5nLEYSJ2f9wH6CilZ4wxESCEFPtoAJIRSSUcoNlDG7Ntc3RF8EW7dMXSvetFaHRdpBy9tq6o9drFIjTFVOc6GG3b7mmjS9Y1bU6FdXWdDtGe13VyR9tziJ6urx6ns9Hd_c3t9PJuZNmEtSNnBXYCgDHg2gvpPTFGY8PmE1wSIj1wAcxoqktNLeFc4JJZ4NLzkhpD6BBdbHRfslm5eT9C1LV6idVKx7UKulK_K021VIvwprgoS8FoJ3C2FYjhNbvUqlWVegu6cSEnRaQsqeSc9ujpH_Q55NitJikAoBID47KjYEN1eaQUnf8ahmDVZ6W-s1J9VqqzMkQnP218fflMpgPoBkhdqVm4-N37H9kP0YGksw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223802458</pqid></control><display><type>article</type><title>Structure of the hexagonal surface layer on Caulobacter crescentus cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bharat, Tanmay A. M. ; Kureisaite-Ciziene, Danguole ; Hardy, Gail G. ; Yu, Ellen W. ; Devant, Jessica M. ; Hagen, Wim J. H. ; Brun, Yves V. ; Briggs, John A. G. ; Löwe, Jan</creator><creatorcontrib>Bharat, Tanmay A. M. ; Kureisaite-Ciziene, Danguole ; Hardy, Gail G. ; Yu, Ellen W. ; Devant, Jessica M. ; Hagen, Wim J. H. ; Brun, Yves V. ; Briggs, John A. G. ; Löwe, Jan</creatorcontrib><description>Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea 1 – 5 . S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity. In situ structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified Caulobacter crescentus ' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the in vivo S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca 2+ ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging. The S-layer structure of C. crescentus is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/nmicrobiol.2017.59</identifier><identifier>PMID: 28418382</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/326/41/2536 ; 631/326/88 ; 631/535/1258/1260 ; 631/535/1266 ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Proteins - chemistry ; Biomedical and Life Sciences ; Calcium ; Caulobacter crescentus ; Caulobacter crescentus - chemistry ; Crystallography ; Crystallography, X-Ray ; Electron Microscope Tomography ; Gram-negative bacteria ; Infectious Diseases ; Interfaces ; letter ; Life Sciences ; Medical Microbiology ; Membrane Glycoproteins - chemistry ; Membrane Glycoproteins - isolation &amp; purification ; Membrane Glycoproteins - ultrastructure ; Microbiology ; Parasitology ; Pathogenicity ; Proteins ; Surface Properties ; Virology ; X-ray crystallography</subject><ispartof>Nature microbiology, 2017-04, Vol.2 (7), p.17059-17059, Article 17059</ispartof><rights>Macmillan Publishers Limited 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</citedby><cites>FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</cites><orcidid>0000-0002-0168-0277 ; 0000-0002-5218-6615 ; 0000-0001-6229-2692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmicrobiol.2017.59$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmicrobiol.2017.59$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28418382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bharat, Tanmay A. M.</creatorcontrib><creatorcontrib>Kureisaite-Ciziene, Danguole</creatorcontrib><creatorcontrib>Hardy, Gail G.</creatorcontrib><creatorcontrib>Yu, Ellen W.</creatorcontrib><creatorcontrib>Devant, Jessica M.</creatorcontrib><creatorcontrib>Hagen, Wim J. H.</creatorcontrib><creatorcontrib>Brun, Yves V.</creatorcontrib><creatorcontrib>Briggs, John A. G.</creatorcontrib><creatorcontrib>Löwe, Jan</creatorcontrib><title>Structure of the hexagonal surface layer on Caulobacter crescentus cells</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea 1 – 5 . S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity. In situ structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified Caulobacter crescentus ' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the in vivo S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca 2+ ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging. The S-layer structure of C. crescentus is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.</description><subject>101/28</subject><subject>631/326/41/2536</subject><subject>631/326/88</subject><subject>631/535/1258/1260</subject><subject>631/535/1266</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Proteins - chemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - chemistry</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Electron Microscope Tomography</subject><subject>Gram-negative bacteria</subject><subject>Infectious Diseases</subject><subject>Interfaces</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Membrane Glycoproteins - isolation &amp; purification</subject><subject>Membrane Glycoproteins - ultrastructure</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Pathogenicity</subject><subject>Proteins</subject><subject>Surface Properties</subject><subject>Virology</subject><subject>X-ray crystallography</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMoVqp_wIUMuHHTmtw8mtkIUtQKggt1HZI0aUemE00mYv-9M7Q-F66ScL-ce889CB0TPCaYyvNmVdkYTBXqMWAyGfNyBx0A5nLEYSJ2f9wH6CilZ4wxESCEFPtoAJIRSSUcoNlDG7Ntc3RF8EW7dMXSvetFaHRdpBy9tq6o9drFIjTFVOc6GG3b7mmjS9Y1bU6FdXWdDtGe13VyR9tziJ6urx6ns9Hd_c3t9PJuZNmEtSNnBXYCgDHg2gvpPTFGY8PmE1wSIj1wAcxoqktNLeFc4JJZ4NLzkhpD6BBdbHRfslm5eT9C1LV6idVKx7UKulK_K021VIvwprgoS8FoJ3C2FYjhNbvUqlWVegu6cSEnRaQsqeSc9ujpH_Q55NitJikAoBID47KjYEN1eaQUnf8ahmDVZ6W-s1J9VqqzMkQnP218fflMpgPoBkhdqVm4-N37H9kP0YGksw</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Bharat, Tanmay A. M.</creator><creator>Kureisaite-Ciziene, Danguole</creator><creator>Hardy, Gail G.</creator><creator>Yu, Ellen W.</creator><creator>Devant, Jessica M.</creator><creator>Hagen, Wim J. H.</creator><creator>Brun, Yves V.</creator><creator>Briggs, John A. G.</creator><creator>Löwe, Jan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0168-0277</orcidid><orcidid>https://orcid.org/0000-0002-5218-6615</orcidid><orcidid>https://orcid.org/0000-0001-6229-2692</orcidid></search><sort><creationdate>20170418</creationdate><title>Structure of the hexagonal surface layer on Caulobacter crescentus cells</title><author>Bharat, Tanmay A. M. ; Kureisaite-Ciziene, Danguole ; Hardy, Gail G. ; Yu, Ellen W. ; Devant, Jessica M. ; Hagen, Wim J. H. ; Brun, Yves V. ; Briggs, John A. G. ; Löwe, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ec60e6224425af68ff1bba0b4d709118f25624ba3a9a3c1556094c258f593bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>101/28</topic><topic>631/326/41/2536</topic><topic>631/326/88</topic><topic>631/535/1258/1260</topic><topic>631/535/1266</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Proteins - chemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - chemistry</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Electron Microscope Tomography</topic><topic>Gram-negative bacteria</topic><topic>Infectious Diseases</topic><topic>Interfaces</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Membrane Glycoproteins - isolation &amp; purification</topic><topic>Membrane Glycoproteins - ultrastructure</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Pathogenicity</topic><topic>Proteins</topic><topic>Surface Properties</topic><topic>Virology</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharat, Tanmay A. M.</creatorcontrib><creatorcontrib>Kureisaite-Ciziene, Danguole</creatorcontrib><creatorcontrib>Hardy, Gail G.</creatorcontrib><creatorcontrib>Yu, Ellen W.</creatorcontrib><creatorcontrib>Devant, Jessica M.</creatorcontrib><creatorcontrib>Hagen, Wim J. H.</creatorcontrib><creatorcontrib>Brun, Yves V.</creatorcontrib><creatorcontrib>Briggs, John A. G.</creatorcontrib><creatorcontrib>Löwe, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharat, Tanmay A. M.</au><au>Kureisaite-Ciziene, Danguole</au><au>Hardy, Gail G.</au><au>Yu, Ellen W.</au><au>Devant, Jessica M.</au><au>Hagen, Wim J. H.</au><au>Brun, Yves V.</au><au>Briggs, John A. G.</au><au>Löwe, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the hexagonal surface layer on Caulobacter crescentus cells</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>2</volume><issue>7</issue><spage>17059</spage><epage>17059</epage><pages>17059-17059</pages><artnum>17059</artnum><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea 1 – 5 . S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity. In situ structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified Caulobacter crescentus ' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the in vivo S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca 2+ ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging. The S-layer structure of C. crescentus is revealed by combining the X-ray crystal structure of an S-layer protein and cryo-ET of cell stalks. The resulting model shows that the S-layer is porous and stabilized by calcium ions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28418382</pmid><doi>10.1038/nmicrobiol.2017.59</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0168-0277</orcidid><orcidid>https://orcid.org/0000-0002-5218-6615</orcidid><orcidid>https://orcid.org/0000-0001-6229-2692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-5276
ispartof Nature microbiology, 2017-04, Vol.2 (7), p.17059-17059, Article 17059
issn 2058-5276
2058-5276
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699643
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 101/28
631/326/41/2536
631/326/88
631/535/1258/1260
631/535/1266
Bacterial Outer Membrane Proteins - chemistry
Bacterial Proteins - chemistry
Biomedical and Life Sciences
Calcium
Caulobacter crescentus
Caulobacter crescentus - chemistry
Crystallography
Crystallography, X-Ray
Electron Microscope Tomography
Gram-negative bacteria
Infectious Diseases
Interfaces
letter
Life Sciences
Medical Microbiology
Membrane Glycoproteins - chemistry
Membrane Glycoproteins - isolation & purification
Membrane Glycoproteins - ultrastructure
Microbiology
Parasitology
Pathogenicity
Proteins
Surface Properties
Virology
X-ray crystallography
title Structure of the hexagonal surface layer on Caulobacter crescentus cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20hexagonal%20surface%20layer%20on%20Caulobacter%20crescentus%20cells&rft.jtitle=Nature%20microbiology&rft.au=Bharat,%20Tanmay%20A.%20M.&rft.date=2017-04-18&rft.volume=2&rft.issue=7&rft.spage=17059&rft.epage=17059&rft.pages=17059-17059&rft.artnum=17059&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/nmicrobiol.2017.59&rft_dat=%3Cproquest_pubme%3E2223802458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2223802458&rft_id=info:pmid/28418382&rfr_iscdi=true