Human neonatal thymectomy induces altered B‐cell responses and autoreactivity

An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the developme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology 2017-11, Vol.47 (11), p.1970-1981
Hauptverfasser: den Broek, Theo, Madi, Asaf, Delemarre, Eveline M., Schadenberg, Alvin W. L., Tesselaar, Kiki, Borghans, José A. M., Nierkens, Stefan, Redegeld, Frank A., Otten, Henny G., Rossetti, Maura, Albani, Salvatore, Sorek, Rachel, Cohen, Irun R., Jansen, Nicolaas J. G., Wijk, Femke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1981
container_issue 11
container_start_page 1970
container_title European journal of immunology
container_volume 47
creator den Broek, Theo
Madi, Asaf
Delemarre, Eveline M.
Schadenberg, Alvin W. L.
Tesselaar, Kiki
Borghans, José A. M.
Nierkens, Stefan
Redegeld, Frank A.
Otten, Henny G.
Rossetti, Maura
Albani, Salvatore
Sorek, Rachel
Cohen, Irun R.
Jansen, Nicolaas J. G.
Wijk, Femke
description An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the development of autoreactivity. Two cohorts of neonatally thymectomized individuals were examined, a cohort of young (1–5 years post‐Tx, n = 10–27) and older children (>10 years, n = 26), and compared to healthy age‐matched controls. T‐cell and B‐cell subsets were assessed and autoantibody profiling performed. Early post‐Tx, a decrease in T‐cell numbers (2.75 × 109/L vs. 0.71 × 109/L) and an increased proportion of memory T cells (19.72 vs. 57.43%) were observed. The presence of autoantibodies was correlated with an increased proportion of memory T cells in thymectomized children. No differences were seen in percentages of different B‐cell subsets between the groups. The autoantigen microarray showed a skewed autoantibody response after Tx. In the cohort of older individuals, autoantibodies were present in 62% of the thymectomized children, while they were found in only 33% of the healthy controls. Overall, our data suggest that neonatal Tx skews the autoantibody profile. Preferential expansion and preservation of Treg (regulatory T) cell stability and function, may contribute to preventing autoimmune disease development after Tx. Neonatal Tx results in T‐cell lymphopenia with subsequent homeostatic T‐cell proliferation and memory T‐cell expansion, but an unaltered B‐cell phenotype. The antibody repertoire is skewed toward autoreactivity following memory T‐cell expansion. Preferential expansion of regulatory T cells might prevent autoreactivity from developing into autoimmune disease.
doi_str_mv 10.1002/eji.201746971
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5697610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961342831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4583-88dbc3f4479f626458e7af12d11565cf2b192409baa9fea098427f63fb2e27283</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhyBVF4sIlxeM4TnxBgqrQokq9wNlynDH1KrEX2ynKjZ_Ab-SX4NWWFXDgNNLMp6d57xHyHOgZUMpe49adMQodF7KDB2QDLYOaA4eHZEMp8JrJnp6QJyltKaVStPIxOWG9kNC1dENuLpdZ-8pj8Drrqcq364wmh3mtnB8Xg6nSU8aIY_Xu5_cfBqepiph2waf9yY-VXnKIqE12dy6vT8kjq6eEz-7nKfn8_uLT-WV9ffPh6vztdW142zd134-DaSznnbSCibLDTltgI0ArWmPZAJJxKgetpUVNZc9ZZ0VjB4asY31zSt4cdHfLMONo0OeoJ7WLbtZxVUE79ffFu1v1JdyptuQkgBaBV_cCMXxdMGU1u7S3p0sWS1JQAhIlrX6PvvwH3YYl-mKvUAIaXv6BQtUHysSQUkR7fAao2lelSlXqWFXhX_zp4Ej_7qYA7AB8cxOu_1dTFx-vOKVN8wu9gKAZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961342831</pqid></control><display><type>article</type><title>Human neonatal thymectomy induces altered B‐cell responses and autoreactivity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>den Broek, Theo ; Madi, Asaf ; Delemarre, Eveline M. ; Schadenberg, Alvin W. L. ; Tesselaar, Kiki ; Borghans, José A. M. ; Nierkens, Stefan ; Redegeld, Frank A. ; Otten, Henny G. ; Rossetti, Maura ; Albani, Salvatore ; Sorek, Rachel ; Cohen, Irun R. ; Jansen, Nicolaas J. G. ; Wijk, Femke</creator><creatorcontrib>den Broek, Theo ; Madi, Asaf ; Delemarre, Eveline M. ; Schadenberg, Alvin W. L. ; Tesselaar, Kiki ; Borghans, José A. M. ; Nierkens, Stefan ; Redegeld, Frank A. ; Otten, Henny G. ; Rossetti, Maura ; Albani, Salvatore ; Sorek, Rachel ; Cohen, Irun R. ; Jansen, Nicolaas J. G. ; Wijk, Femke</creatorcontrib><description>An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the development of autoreactivity. Two cohorts of neonatally thymectomized individuals were examined, a cohort of young (1–5 years post‐Tx, n = 10–27) and older children (&gt;10 years, n = 26), and compared to healthy age‐matched controls. T‐cell and B‐cell subsets were assessed and autoantibody profiling performed. Early post‐Tx, a decrease in T‐cell numbers (2.75 × 109/L vs. 0.71 × 109/L) and an increased proportion of memory T cells (19.72 vs. 57.43%) were observed. The presence of autoantibodies was correlated with an increased proportion of memory T cells in thymectomized children. No differences were seen in percentages of different B‐cell subsets between the groups. The autoantigen microarray showed a skewed autoantibody response after Tx. In the cohort of older individuals, autoantibodies were present in 62% of the thymectomized children, while they were found in only 33% of the healthy controls. Overall, our data suggest that neonatal Tx skews the autoantibody profile. Preferential expansion and preservation of Treg (regulatory T) cell stability and function, may contribute to preventing autoimmune disease development after Tx. Neonatal Tx results in T‐cell lymphopenia with subsequent homeostatic T‐cell proliferation and memory T‐cell expansion, but an unaltered B‐cell phenotype. The antibody repertoire is skewed toward autoreactivity following memory T‐cell expansion. Preferential expansion of regulatory T cells might prevent autoreactivity from developing into autoimmune disease.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.201746971</identifier><identifier>PMID: 28691750</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Autoantibodies ; Autoantibodies - immunology ; Autoantigens ; Autoantigens - immunology ; Autoimmunity ; Autoimmunity - immunology ; B cells ; B-Lymphocytes - immunology ; Child ; Child, Preschool ; Children ; Clinical ; Female ; Homeostatic proliferation ; Human behavior ; Humans ; Immunodeficiencies and autoimmunity ; Immunologic Memory - immunology ; Immunological memory ; Infant ; Infant, Newborn ; Lymphocytes ; Lymphocytes B ; Lymphocytes T ; Lymphopenia ; Male ; Memory cells ; Neonates ; Preservation ; Regulatory T cell ; T cell receptors ; T-Lymphocytes - immunology ; Thymectomy ; Thymectomy - adverse effects</subject><ispartof>European journal of immunology, 2017-11, Vol.47 (11), p.1970-1981</ispartof><rights>2017 The Authors. published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4583-88dbc3f4479f626458e7af12d11565cf2b192409baa9fea098427f63fb2e27283</citedby><cites>FETCH-LOGICAL-c4583-88dbc3f4479f626458e7af12d11565cf2b192409baa9fea098427f63fb2e27283</cites><orcidid>0000-0002-2781-5731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.201746971$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.201746971$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28691750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>den Broek, Theo</creatorcontrib><creatorcontrib>Madi, Asaf</creatorcontrib><creatorcontrib>Delemarre, Eveline M.</creatorcontrib><creatorcontrib>Schadenberg, Alvin W. L.</creatorcontrib><creatorcontrib>Tesselaar, Kiki</creatorcontrib><creatorcontrib>Borghans, José A. M.</creatorcontrib><creatorcontrib>Nierkens, Stefan</creatorcontrib><creatorcontrib>Redegeld, Frank A.</creatorcontrib><creatorcontrib>Otten, Henny G.</creatorcontrib><creatorcontrib>Rossetti, Maura</creatorcontrib><creatorcontrib>Albani, Salvatore</creatorcontrib><creatorcontrib>Sorek, Rachel</creatorcontrib><creatorcontrib>Cohen, Irun R.</creatorcontrib><creatorcontrib>Jansen, Nicolaas J. G.</creatorcontrib><creatorcontrib>Wijk, Femke</creatorcontrib><title>Human neonatal thymectomy induces altered B‐cell responses and autoreactivity</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the development of autoreactivity. Two cohorts of neonatally thymectomized individuals were examined, a cohort of young (1–5 years post‐Tx, n = 10–27) and older children (&gt;10 years, n = 26), and compared to healthy age‐matched controls. T‐cell and B‐cell subsets were assessed and autoantibody profiling performed. Early post‐Tx, a decrease in T‐cell numbers (2.75 × 109/L vs. 0.71 × 109/L) and an increased proportion of memory T cells (19.72 vs. 57.43%) were observed. The presence of autoantibodies was correlated with an increased proportion of memory T cells in thymectomized children. No differences were seen in percentages of different B‐cell subsets between the groups. The autoantigen microarray showed a skewed autoantibody response after Tx. In the cohort of older individuals, autoantibodies were present in 62% of the thymectomized children, while they were found in only 33% of the healthy controls. Overall, our data suggest that neonatal Tx skews the autoantibody profile. Preferential expansion and preservation of Treg (regulatory T) cell stability and function, may contribute to preventing autoimmune disease development after Tx. Neonatal Tx results in T‐cell lymphopenia with subsequent homeostatic T‐cell proliferation and memory T‐cell expansion, but an unaltered B‐cell phenotype. The antibody repertoire is skewed toward autoreactivity following memory T‐cell expansion. Preferential expansion of regulatory T cells might prevent autoreactivity from developing into autoimmune disease.</description><subject>Autoantibodies</subject><subject>Autoantibodies - immunology</subject><subject>Autoantigens</subject><subject>Autoantigens - immunology</subject><subject>Autoimmunity</subject><subject>Autoimmunity - immunology</subject><subject>B cells</subject><subject>B-Lymphocytes - immunology</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Clinical</subject><subject>Female</subject><subject>Homeostatic proliferation</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Immunodeficiencies and autoimmunity</subject><subject>Immunologic Memory - immunology</subject><subject>Immunological memory</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Lymphopenia</subject><subject>Male</subject><subject>Memory cells</subject><subject>Neonates</subject><subject>Preservation</subject><subject>Regulatory T cell</subject><subject>T cell receptors</subject><subject>T-Lymphocytes - immunology</subject><subject>Thymectomy</subject><subject>Thymectomy - adverse effects</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EokvhyBVF4sIlxeM4TnxBgqrQokq9wNlynDH1KrEX2ynKjZ_Ab-SX4NWWFXDgNNLMp6d57xHyHOgZUMpe49adMQodF7KDB2QDLYOaA4eHZEMp8JrJnp6QJyltKaVStPIxOWG9kNC1dENuLpdZ-8pj8Drrqcq364wmh3mtnB8Xg6nSU8aIY_Xu5_cfBqepiph2waf9yY-VXnKIqE12dy6vT8kjq6eEz-7nKfn8_uLT-WV9ffPh6vztdW142zd134-DaSznnbSCibLDTltgI0ArWmPZAJJxKgetpUVNZc9ZZ0VjB4asY31zSt4cdHfLMONo0OeoJ7WLbtZxVUE79ffFu1v1JdyptuQkgBaBV_cCMXxdMGU1u7S3p0sWS1JQAhIlrX6PvvwH3YYl-mKvUAIaXv6BQtUHysSQUkR7fAao2lelSlXqWFXhX_zp4Ej_7qYA7AB8cxOu_1dTFx-vOKVN8wu9gKAZ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>den Broek, Theo</creator><creator>Madi, Asaf</creator><creator>Delemarre, Eveline M.</creator><creator>Schadenberg, Alvin W. L.</creator><creator>Tesselaar, Kiki</creator><creator>Borghans, José A. M.</creator><creator>Nierkens, Stefan</creator><creator>Redegeld, Frank A.</creator><creator>Otten, Henny G.</creator><creator>Rossetti, Maura</creator><creator>Albani, Salvatore</creator><creator>Sorek, Rachel</creator><creator>Cohen, Irun R.</creator><creator>Jansen, Nicolaas J. G.</creator><creator>Wijk, Femke</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2781-5731</orcidid></search><sort><creationdate>201711</creationdate><title>Human neonatal thymectomy induces altered B‐cell responses and autoreactivity</title><author>den Broek, Theo ; Madi, Asaf ; Delemarre, Eveline M. ; Schadenberg, Alvin W. L. ; Tesselaar, Kiki ; Borghans, José A. M. ; Nierkens, Stefan ; Redegeld, Frank A. ; Otten, Henny G. ; Rossetti, Maura ; Albani, Salvatore ; Sorek, Rachel ; Cohen, Irun R. ; Jansen, Nicolaas J. G. ; Wijk, Femke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4583-88dbc3f4479f626458e7af12d11565cf2b192409baa9fea098427f63fb2e27283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoantibodies</topic><topic>Autoantibodies - immunology</topic><topic>Autoantigens</topic><topic>Autoantigens - immunology</topic><topic>Autoimmunity</topic><topic>Autoimmunity - immunology</topic><topic>B cells</topic><topic>B-Lymphocytes - immunology</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Clinical</topic><topic>Female</topic><topic>Homeostatic proliferation</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Immunodeficiencies and autoimmunity</topic><topic>Immunologic Memory - immunology</topic><topic>Immunological memory</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Lymphopenia</topic><topic>Male</topic><topic>Memory cells</topic><topic>Neonates</topic><topic>Preservation</topic><topic>Regulatory T cell</topic><topic>T cell receptors</topic><topic>T-Lymphocytes - immunology</topic><topic>Thymectomy</topic><topic>Thymectomy - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Broek, Theo</creatorcontrib><creatorcontrib>Madi, Asaf</creatorcontrib><creatorcontrib>Delemarre, Eveline M.</creatorcontrib><creatorcontrib>Schadenberg, Alvin W. L.</creatorcontrib><creatorcontrib>Tesselaar, Kiki</creatorcontrib><creatorcontrib>Borghans, José A. M.</creatorcontrib><creatorcontrib>Nierkens, Stefan</creatorcontrib><creatorcontrib>Redegeld, Frank A.</creatorcontrib><creatorcontrib>Otten, Henny G.</creatorcontrib><creatorcontrib>Rossetti, Maura</creatorcontrib><creatorcontrib>Albani, Salvatore</creatorcontrib><creatorcontrib>Sorek, Rachel</creatorcontrib><creatorcontrib>Cohen, Irun R.</creatorcontrib><creatorcontrib>Jansen, Nicolaas J. G.</creatorcontrib><creatorcontrib>Wijk, Femke</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Broek, Theo</au><au>Madi, Asaf</au><au>Delemarre, Eveline M.</au><au>Schadenberg, Alvin W. L.</au><au>Tesselaar, Kiki</au><au>Borghans, José A. M.</au><au>Nierkens, Stefan</au><au>Redegeld, Frank A.</au><au>Otten, Henny G.</au><au>Rossetti, Maura</au><au>Albani, Salvatore</au><au>Sorek, Rachel</au><au>Cohen, Irun R.</au><au>Jansen, Nicolaas J. G.</au><au>Wijk, Femke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human neonatal thymectomy induces altered B‐cell responses and autoreactivity</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>47</volume><issue>11</issue><spage>1970</spage><epage>1981</epage><pages>1970-1981</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><abstract>An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the development of autoreactivity. Two cohorts of neonatally thymectomized individuals were examined, a cohort of young (1–5 years post‐Tx, n = 10–27) and older children (&gt;10 years, n = 26), and compared to healthy age‐matched controls. T‐cell and B‐cell subsets were assessed and autoantibody profiling performed. Early post‐Tx, a decrease in T‐cell numbers (2.75 × 109/L vs. 0.71 × 109/L) and an increased proportion of memory T cells (19.72 vs. 57.43%) were observed. The presence of autoantibodies was correlated with an increased proportion of memory T cells in thymectomized children. No differences were seen in percentages of different B‐cell subsets between the groups. The autoantigen microarray showed a skewed autoantibody response after Tx. In the cohort of older individuals, autoantibodies were present in 62% of the thymectomized children, while they were found in only 33% of the healthy controls. Overall, our data suggest that neonatal Tx skews the autoantibody profile. Preferential expansion and preservation of Treg (regulatory T) cell stability and function, may contribute to preventing autoimmune disease development after Tx. Neonatal Tx results in T‐cell lymphopenia with subsequent homeostatic T‐cell proliferation and memory T‐cell expansion, but an unaltered B‐cell phenotype. The antibody repertoire is skewed toward autoreactivity following memory T‐cell expansion. Preferential expansion of regulatory T cells might prevent autoreactivity from developing into autoimmune disease.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28691750</pmid><doi>10.1002/eji.201746971</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2781-5731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2980
ispartof European journal of immunology, 2017-11, Vol.47 (11), p.1970-1981
issn 0014-2980
1521-4141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5697610
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Autoantibodies
Autoantibodies - immunology
Autoantigens
Autoantigens - immunology
Autoimmunity
Autoimmunity - immunology
B cells
B-Lymphocytes - immunology
Child
Child, Preschool
Children
Clinical
Female
Homeostatic proliferation
Human behavior
Humans
Immunodeficiencies and autoimmunity
Immunologic Memory - immunology
Immunological memory
Infant
Infant, Newborn
Lymphocytes
Lymphocytes B
Lymphocytes T
Lymphopenia
Male
Memory cells
Neonates
Preservation
Regulatory T cell
T cell receptors
T-Lymphocytes - immunology
Thymectomy
Thymectomy - adverse effects
title Human neonatal thymectomy induces altered B‐cell responses and autoreactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20neonatal%20thymectomy%20induces%20altered%20B%E2%80%90cell%20responses%20and%20autoreactivity&rft.jtitle=European%20journal%20of%20immunology&rft.au=den%20Broek,%20Theo&rft.date=2017-11&rft.volume=47&rft.issue=11&rft.spage=1970&rft.epage=1981&rft.pages=1970-1981&rft.issn=0014-2980&rft.eissn=1521-4141&rft_id=info:doi/10.1002/eji.201746971&rft_dat=%3Cproquest_pubme%3E1961342831%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961342831&rft_id=info:pmid/28691750&rfr_iscdi=true