Implementing the sterile insect technique with RNA interference – a review

We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)‐related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entomologia experimentalis et applicata 2017-09, Vol.164 (3), p.155-175
Hauptverfasser: Darrington, Michael, Dalmay, Tamas, Morrison, Neil I., Chapman, Tracey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 3
container_start_page 155
container_title Entomologia experimentalis et applicata
container_volume 164
creator Darrington, Michael
Dalmay, Tamas
Morrison, Neil I.
Chapman, Tracey
description We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)‐related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non‐GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double‐stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
doi_str_mv 10.1111/eea.12575
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5697603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315252663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-a70dff1f4436da51e25c2b6036d7a1a4dec43877dc60f0487f1825b4e311f8503</originalsourceid><addsrcrecordid>eNp1kc1KJDEURoOMaI-68AUkMBtnUXqTSirVG6GRdhQaBdF1SKdu7Ej99CTV3bjzHXxDn2SireIIZhPCPXz5LoeQfQZHLJ1jRHPEuFRygwyYVJApIcsfZADA8qxUkG-TnzHeA4BSQ7ZFtvmQAwjFBmRy0cxrbLDtfXtH-xnS2GPwNVLfRrQ97dHOWv93gXTl-xm9vhylSUIcBmwt0ufHJ2powKXH1S7ZdKaOuPd275Dbs_HN6Xk2ufpzcTqaZFaoQmZGQeUcc0LkRWUkQy4tnxaQXsowIyq0Ii-VqmwBDkSpHCu5nArMGXOlhHyHnKxz54tpg5VN7YOp9Tz4xoQH3Rmv_5-0fqbvuqWWxVClf1LA4VtA6NJqsdeNjxbr2rTYLaLmOZNc8qJ4QX99Qe-7RWjTepoNZQ5Kwiv1e03Z0MUY0H2UYaBfHOnkSL86SuzB5_Yf5LuUBByvgVXy8PB9kh6PR-vIf_bwm3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953075063</pqid></control><display><type>article</type><title>Implementing the sterile insect technique with RNA interference – a review</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Darrington, Michael ; Dalmay, Tamas ; Morrison, Neil I. ; Chapman, Tracey</creator><creatorcontrib>Darrington, Michael ; Dalmay, Tamas ; Morrison, Neil I. ; Chapman, Tracey</creatorcontrib><description>We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)‐related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non‐GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double‐stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.</description><identifier>ISSN: 0013-8703</identifier><identifier>EISSN: 1570-7458</identifier><identifier>DOI: 10.1111/eea.12575</identifier><identifier>PMID: 29200471</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; digestive system ; Double-stranded RNA ; Drosophila melanogaster ; Endocytosis ; environmental RNAi ; Gene expression ; gene targeting ; genes ; Genetics ; Homo sapiens ; insect control ; insect pests ; Insects ; Interference ; messenger RNA ; Molecular modelling ; mRNA ; Nanoparticles ; non‐GM pest control ; Nucleotide sequence ; nucleotide sequences ; Pest control ; Pests ; pH effects ; Protein structure ; Reviews ; Ribonucleic acid ; RNA ; RNA interference ; RNA-mediated interference ; Secondary structure ; SIT ; Special Issue ‐ Sterile Insect Technique ; sterile insect technique ; Sterilized organisms ; Taxa ; Taxonomy ; toxicity ; Transcription ; variance</subject><ispartof>Entomologia experimentalis et applicata, 2017-09, Vol.164 (3), p.155-175</ispartof><rights>2017 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Netherlands Entomological Society</rights><rights>Entomologia Experimentalis et Applicata © 2017 The Netherlands Entomological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-a70dff1f4436da51e25c2b6036d7a1a4dec43877dc60f0487f1825b4e311f8503</citedby><cites>FETCH-LOGICAL-c4765-a70dff1f4436da51e25c2b6036d7a1a4dec43877dc60f0487f1825b4e311f8503</cites><orcidid>0000-0002-2401-8120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Feea.12575$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Feea.12575$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29200471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darrington, Michael</creatorcontrib><creatorcontrib>Dalmay, Tamas</creatorcontrib><creatorcontrib>Morrison, Neil I.</creatorcontrib><creatorcontrib>Chapman, Tracey</creatorcontrib><title>Implementing the sterile insect technique with RNA interference – a review</title><title>Entomologia experimentalis et applicata</title><addtitle>Entomol Exp Appl</addtitle><description>We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)‐related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non‐GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double‐stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.</description><subject>Bacteria</subject><subject>digestive system</subject><subject>Double-stranded RNA</subject><subject>Drosophila melanogaster</subject><subject>Endocytosis</subject><subject>environmental RNAi</subject><subject>Gene expression</subject><subject>gene targeting</subject><subject>genes</subject><subject>Genetics</subject><subject>Homo sapiens</subject><subject>insect control</subject><subject>insect pests</subject><subject>Insects</subject><subject>Interference</subject><subject>messenger RNA</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Nanoparticles</subject><subject>non‐GM pest control</subject><subject>Nucleotide sequence</subject><subject>nucleotide sequences</subject><subject>Pest control</subject><subject>Pests</subject><subject>pH effects</subject><subject>Protein structure</subject><subject>Reviews</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA interference</subject><subject>RNA-mediated interference</subject><subject>Secondary structure</subject><subject>SIT</subject><subject>Special Issue ‐ Sterile Insect Technique</subject><subject>sterile insect technique</subject><subject>Sterilized organisms</subject><subject>Taxa</subject><subject>Taxonomy</subject><subject>toxicity</subject><subject>Transcription</subject><subject>variance</subject><issn>0013-8703</issn><issn>1570-7458</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc1KJDEURoOMaI-68AUkMBtnUXqTSirVG6GRdhQaBdF1SKdu7Ej99CTV3bjzHXxDn2SireIIZhPCPXz5LoeQfQZHLJ1jRHPEuFRygwyYVJApIcsfZADA8qxUkG-TnzHeA4BSQ7ZFtvmQAwjFBmRy0cxrbLDtfXtH-xnS2GPwNVLfRrQ97dHOWv93gXTl-xm9vhylSUIcBmwt0ufHJ2powKXH1S7ZdKaOuPd275Dbs_HN6Xk2ufpzcTqaZFaoQmZGQeUcc0LkRWUkQy4tnxaQXsowIyq0Ii-VqmwBDkSpHCu5nArMGXOlhHyHnKxz54tpg5VN7YOp9Tz4xoQH3Rmv_5-0fqbvuqWWxVClf1LA4VtA6NJqsdeNjxbr2rTYLaLmOZNc8qJ4QX99Qe-7RWjTepoNZQ5Kwiv1e03Z0MUY0H2UYaBfHOnkSL86SuzB5_Yf5LuUBByvgVXy8PB9kh6PR-vIf_bwm3Q</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Darrington, Michael</creator><creator>Dalmay, Tamas</creator><creator>Morrison, Neil I.</creator><creator>Chapman, Tracey</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2401-8120</orcidid></search><sort><creationdate>201709</creationdate><title>Implementing the sterile insect technique with RNA interference – a review</title><author>Darrington, Michael ; Dalmay, Tamas ; Morrison, Neil I. ; Chapman, Tracey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-a70dff1f4436da51e25c2b6036d7a1a4dec43877dc60f0487f1825b4e311f8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>digestive system</topic><topic>Double-stranded RNA</topic><topic>Drosophila melanogaster</topic><topic>Endocytosis</topic><topic>environmental RNAi</topic><topic>Gene expression</topic><topic>gene targeting</topic><topic>genes</topic><topic>Genetics</topic><topic>Homo sapiens</topic><topic>insect control</topic><topic>insect pests</topic><topic>Insects</topic><topic>Interference</topic><topic>messenger RNA</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Nanoparticles</topic><topic>non‐GM pest control</topic><topic>Nucleotide sequence</topic><topic>nucleotide sequences</topic><topic>Pest control</topic><topic>Pests</topic><topic>pH effects</topic><topic>Protein structure</topic><topic>Reviews</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA interference</topic><topic>RNA-mediated interference</topic><topic>Secondary structure</topic><topic>SIT</topic><topic>Special Issue ‐ Sterile Insect Technique</topic><topic>sterile insect technique</topic><topic>Sterilized organisms</topic><topic>Taxa</topic><topic>Taxonomy</topic><topic>toxicity</topic><topic>Transcription</topic><topic>variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darrington, Michael</creatorcontrib><creatorcontrib>Dalmay, Tamas</creatorcontrib><creatorcontrib>Morrison, Neil I.</creatorcontrib><creatorcontrib>Chapman, Tracey</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entomologia experimentalis et applicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darrington, Michael</au><au>Dalmay, Tamas</au><au>Morrison, Neil I.</au><au>Chapman, Tracey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing the sterile insect technique with RNA interference – a review</atitle><jtitle>Entomologia experimentalis et applicata</jtitle><addtitle>Entomol Exp Appl</addtitle><date>2017-09</date><risdate>2017</risdate><volume>164</volume><issue>3</issue><spage>155</spage><epage>175</epage><pages>155-175</pages><issn>0013-8703</issn><eissn>1570-7458</eissn><abstract>We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)‐related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non‐GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double‐stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29200471</pmid><doi>10.1111/eea.12575</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2401-8120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-8703
ispartof Entomologia experimentalis et applicata, 2017-09, Vol.164 (3), p.155-175
issn 0013-8703
1570-7458
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5697603
source Wiley Online Library Journals Frontfile Complete
subjects Bacteria
digestive system
Double-stranded RNA
Drosophila melanogaster
Endocytosis
environmental RNAi
Gene expression
gene targeting
genes
Genetics
Homo sapiens
insect control
insect pests
Insects
Interference
messenger RNA
Molecular modelling
mRNA
Nanoparticles
non‐GM pest control
Nucleotide sequence
nucleotide sequences
Pest control
Pests
pH effects
Protein structure
Reviews
Ribonucleic acid
RNA
RNA interference
RNA-mediated interference
Secondary structure
SIT
Special Issue ‐ Sterile Insect Technique
sterile insect technique
Sterilized organisms
Taxa
Taxonomy
toxicity
Transcription
variance
title Implementing the sterile insect technique with RNA interference – a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20the%20sterile%20insect%20technique%20with%20RNA%20interference%20%E2%80%93%20a%20review&rft.jtitle=Entomologia%20experimentalis%20et%20applicata&rft.au=Darrington,%20Michael&rft.date=2017-09&rft.volume=164&rft.issue=3&rft.spage=155&rft.epage=175&rft.pages=155-175&rft.issn=0013-8703&rft.eissn=1570-7458&rft_id=info:doi/10.1111/eea.12575&rft_dat=%3Cproquest_pubme%3E2315252663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953075063&rft_id=info:pmid/29200471&rfr_iscdi=true