Accurate thermal conductivities from optimally short molecular dynamics simulations

The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.15835-11, Article 15835
Hauptverfasser: Ercole, Loris, Marcolongo, Aris, Baroni, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 15835
container_title Scientific reports
container_volume 7
creator Ercole, Loris
Marcolongo, Aris
Baroni, Stefano
description The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H 2 O) and of crystalline and glassy solids (MgO and a-SiO 2 ). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities.
doi_str_mv 10.1038/s41598-017-15843-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966999973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-36406bf9dda975816e7f9809d5a744d530894ff04f779efb02e3796014e90fd53</originalsourceid><addsrcrecordid>eNp1kc1LBCEYxiWKWrb-gQ4x0KXLlDqOjpcglr4g6FCdxXW0NZxxUyfY_z5rtmUL8uLH83sf35cHgGMEzxGsmotIUM2bEiJWorohVYl3wARDUpe4wnh363wAjmJ8g3nVmBPE98EB5rkm3ybg6UqpIciki7TQoZOuUL5vB5Xsh01Wx8IE3xV-mWzW3KqICx9S0Xmn1eBkKNpVLzurYhFtlx-S9X08BHtGuqiP1vsUvNxcP8_uyofH2_vZ1UOpCCOprCiBdG5420rO6gZRzQxvIG9ryQhp6wo2nBgDiWGMazOHWFeMU4iI5tBkfQouR9_lMO90q3SfgnRiGXKvYSW8tOK30tuFePUfoqackgZlg7O1QfDvg45JdDYq7ZzstR-iQJxSnherMnr6B33zQ-jzeN8UgQ1BNFN4pFTwMQZtNs0gKL5iE2NsIscmvmMTOBedbI-xKfkJKQPVCMQs9a86bP39v-0nyKCkdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966408416</pqid></control><display><type>article</type><title>Accurate thermal conductivities from optimally short molecular dynamics simulations</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ercole, Loris ; Marcolongo, Aris ; Baroni, Stefano</creator><creatorcontrib>Ercole, Loris ; Marcolongo, Aris ; Baroni, Stefano</creatorcontrib><description>The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H 2 O) and of crystalline and glassy solids (MgO and a-SiO 2 ). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-15843-2</identifier><identifier>PMID: 29158529</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/1034/1037 ; 639/766/119 ; 639/766/259 ; 639/766/530/2804 ; Data processing ; Humanities and Social Sciences ; multidisciplinary ; Noise reduction ; Science ; Science (multidisciplinary) ; Simulation ; Thermal conductivity ; Viscosity</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.15835-11, Article 15835</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-36406bf9dda975816e7f9809d5a744d530894ff04f779efb02e3796014e90fd53</citedby><cites>FETCH-LOGICAL-c474t-36406bf9dda975816e7f9809d5a744d530894ff04f779efb02e3796014e90fd53</cites><orcidid>0000-0002-8089-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696481/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696481/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ercole, Loris</creatorcontrib><creatorcontrib>Marcolongo, Aris</creatorcontrib><creatorcontrib>Baroni, Stefano</creatorcontrib><title>Accurate thermal conductivities from optimally short molecular dynamics simulations</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H 2 O) and of crystalline and glassy solids (MgO and a-SiO 2 ). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities.</description><subject>119/118</subject><subject>639/301/1034/1037</subject><subject>639/766/119</subject><subject>639/766/259</subject><subject>639/766/530/2804</subject><subject>Data processing</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Noise reduction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Thermal conductivity</subject><subject>Viscosity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1LBCEYxiWKWrb-gQ4x0KXLlDqOjpcglr4g6FCdxXW0NZxxUyfY_z5rtmUL8uLH83sf35cHgGMEzxGsmotIUM2bEiJWorohVYl3wARDUpe4wnh363wAjmJ8g3nVmBPE98EB5rkm3ybg6UqpIciki7TQoZOuUL5vB5Xsh01Wx8IE3xV-mWzW3KqICx9S0Xmn1eBkKNpVLzurYhFtlx-S9X08BHtGuqiP1vsUvNxcP8_uyofH2_vZ1UOpCCOprCiBdG5420rO6gZRzQxvIG9ryQhp6wo2nBgDiWGMazOHWFeMU4iI5tBkfQouR9_lMO90q3SfgnRiGXKvYSW8tOK30tuFePUfoqackgZlg7O1QfDvg45JdDYq7ZzstR-iQJxSnherMnr6B33zQ-jzeN8UgQ1BNFN4pFTwMQZtNs0gKL5iE2NsIscmvmMTOBedbI-xKfkJKQPVCMQs9a86bP39v-0nyKCkdQ</recordid><startdate>20171120</startdate><enddate>20171120</enddate><creator>Ercole, Loris</creator><creator>Marcolongo, Aris</creator><creator>Baroni, Stefano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8089-9524</orcidid></search><sort><creationdate>20171120</creationdate><title>Accurate thermal conductivities from optimally short molecular dynamics simulations</title><author>Ercole, Loris ; Marcolongo, Aris ; Baroni, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-36406bf9dda975816e7f9809d5a744d530894ff04f779efb02e3796014e90fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>639/301/1034/1037</topic><topic>639/766/119</topic><topic>639/766/259</topic><topic>639/766/530/2804</topic><topic>Data processing</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Noise reduction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Thermal conductivity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercole, Loris</creatorcontrib><creatorcontrib>Marcolongo, Aris</creatorcontrib><creatorcontrib>Baroni, Stefano</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercole, Loris</au><au>Marcolongo, Aris</au><au>Baroni, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate thermal conductivities from optimally short molecular dynamics simulations</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-20</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>15835</spage><epage>11</epage><pages>15835-11</pages><artnum>15835</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H 2 O) and of crystalline and glassy solids (MgO and a-SiO 2 ). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29158529</pmid><doi>10.1038/s41598-017-15843-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8089-9524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.15835-11, Article 15835
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696481
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 119/118
639/301/1034/1037
639/766/119
639/766/259
639/766/530/2804
Data processing
Humanities and Social Sciences
multidisciplinary
Noise reduction
Science
Science (multidisciplinary)
Simulation
Thermal conductivity
Viscosity
title Accurate thermal conductivities from optimally short molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20thermal%20conductivities%20from%20optimally%20short%20molecular%20dynamics%20simulations&rft.jtitle=Scientific%20reports&rft.au=Ercole,%20Loris&rft.date=2017-11-20&rft.volume=7&rft.issue=1&rft.spage=15835&rft.epage=11&rft.pages=15835-11&rft.artnum=15835&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-15843-2&rft_dat=%3Cproquest_pubme%3E1966999973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966408416&rft_id=info:pmid/29158529&rfr_iscdi=true