Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance

Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC evolutionary biology 2017-11, Vol.7 (22), p.9376-9390
Hauptverfasser: Rougeron, Virginie, Tiedje, Kathryn E., Chen, Donald S., Rask, Thomas S., Gamboa, Dionicia, Maestre, Amanda, Musset, Lise, Legrand, Eric, Noya, Oscar, Yalcindag, Erhan, Renaud, François, Prugnolle, Franck, Day, Karen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9390
container_issue 22
container_start_page 9376
container_title BMC evolutionary biology
container_volume 7
creator Rougeron, Virginie
Tiedje, Kathryn E.
Chen, Donald S.
Rask, Thomas S.
Gamboa, Dionicia
Maestre, Amanda
Musset, Lise
Legrand, Eric
Noya, Oscar
Yalcindag, Erhan
Renaud, François
Prugnolle, Franck
Day, Karen P.
description Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed. Given the importance of the major variant surface antigen of the blood stages of Plasmodium falciparum as both a virulence factor and target of immunity, we decided to investigate the evolutionary patterns of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1), in several countries of South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using 454 sequencing. Striking geographic variation in var DBLα types, surprisingly similar to that seen for microsatellite and SNP markers, was observed. Colombia and French Guiana had distinct var DBLα types, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.
doi_str_mv 10.1002/ece3.3425
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977872571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4815-4070c71d648d0273d09d58ad3212493b74787064ea7e9aaa4c932a72c9d1d3fe3</originalsourceid><addsrcrecordid>eNp1ks1q3DAQgE1paUKaQ1-gCHppD5tIsmxZPRSWZZsEFlpoexaKNM5qsS1XsjbkYfquHWfTkAZqEB7Qp29-mKJ4y-gZo5Sfg4XyrBS8elEccyqqhZRV8_JJfFScprSj-NWUCypfF0dcsUYqWR0Xv9f70OXJh8HEO5KmmO2UI5DQkm-dSX1wPvekNZ31o4kY9mYXItmb6M0wkZRjaywQjP0NDAQPJOIH8j3kaUuWPURvzSdy1Y8dBnOeRFoUwOgd9N6SKZoh9T4lvEKNm5V78F1nBgtvileYOsHpw_-k-Pll_WN1udh8vbhaLTcLKxpWLbApaiVztWgc5bJ0VLmqMa7kjAtVXkshG0lrAUaCMsYIq0puJLfKMVe2UJ4Unw_eMV_34CwMWFanx-h7HIsOxut_bwa_1Tdhr6ta1YIyFCwOgu2zZ5fLjR5NmiBHTVnNmWjkfuY_PCSM4VeGNGkcgYW5awg5aaawXq5UJRB9_wzdhRwHHMdMYWO8krPw44GyMaQUoX2sglE974me90TPe4Lsu6fdPpJ_twKB8wNw6zu4-79Jr1fr8l75B2vnyoY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977872571</pqid></control><display><type>article</type><title>Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance</title><source>Wiley-Blackwell Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rougeron, Virginie ; Tiedje, Kathryn E. ; Chen, Donald S. ; Rask, Thomas S. ; Gamboa, Dionicia ; Maestre, Amanda ; Musset, Lise ; Legrand, Eric ; Noya, Oscar ; Yalcindag, Erhan ; Renaud, François ; Prugnolle, Franck ; Day, Karen P.</creator><creatorcontrib>Rougeron, Virginie ; Tiedje, Kathryn E. ; Chen, Donald S. ; Rask, Thomas S. ; Gamboa, Dionicia ; Maestre, Amanda ; Musset, Lise ; Legrand, Eric ; Noya, Oscar ; Yalcindag, Erhan ; Renaud, François ; Prugnolle, Franck ; Day, Karen P.</creatorcontrib><description>Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed. Given the importance of the major variant surface antigen of the blood stages of Plasmodium falciparum as both a virulence factor and target of immunity, we decided to investigate the evolutionary patterns of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1), in several countries of South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using 454 sequencing. Striking geographic variation in var DBLα types, surprisingly similar to that seen for microsatellite and SNP markers, was observed. Colombia and French Guiana had distinct var DBLα types, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.</description><identifier>ISSN: 2045-7758</identifier><identifier>ISSN: 1471-2148</identifier><identifier>EISSN: 2045-7758</identifier><identifier>EISSN: 1471-2148</identifier><identifier>DOI: 10.1002/ece3.3425</identifier><identifier>PMID: 29187975</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Antigens ; Biological evolution ; Epidemics ; Erythrocyte membrane protein 1 ; Erythrocytes ; evolutionary structure ; Gene sequencing ; Genes ; Genetics ; Herd immunity ; Immunity ; International trade ; Life Sciences ; Malaria ; Membrane proteins ; Microbiology and Parasitology ; Microsatellites ; Migration ; Next-generation sequencing ; Original Research ; Parasitology ; Plasmodium falciparum ; Plasmodium falciparum Erythrocyte Membrane Protein 1 ; Population genetics ; population genomics ; Single-nucleotide polymorphism ; Vaccination ; var genes ; Vector-borne diseases ; Virulence ; Virulence factors</subject><ispartof>BMC evolutionary biology, 2017-11, Vol.7 (22), p.9376-9390</ispartof><rights>2017 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4815-4070c71d648d0273d09d58ad3212493b74787064ea7e9aaa4c932a72c9d1d3fe3</citedby><cites>FETCH-LOGICAL-c4815-4070c71d648d0273d09d58ad3212493b74787064ea7e9aaa4c932a72c9d1d3fe3</cites><orcidid>0000-0001-5873-5681 ; 0000-0003-0215-4110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696401/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696401/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29187975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01621487$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rougeron, Virginie</creatorcontrib><creatorcontrib>Tiedje, Kathryn E.</creatorcontrib><creatorcontrib>Chen, Donald S.</creatorcontrib><creatorcontrib>Rask, Thomas S.</creatorcontrib><creatorcontrib>Gamboa, Dionicia</creatorcontrib><creatorcontrib>Maestre, Amanda</creatorcontrib><creatorcontrib>Musset, Lise</creatorcontrib><creatorcontrib>Legrand, Eric</creatorcontrib><creatorcontrib>Noya, Oscar</creatorcontrib><creatorcontrib>Yalcindag, Erhan</creatorcontrib><creatorcontrib>Renaud, François</creatorcontrib><creatorcontrib>Prugnolle, Franck</creatorcontrib><creatorcontrib>Day, Karen P.</creatorcontrib><title>Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance</title><title>BMC evolutionary biology</title><addtitle>Ecol Evol</addtitle><description>Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed. Given the importance of the major variant surface antigen of the blood stages of Plasmodium falciparum as both a virulence factor and target of immunity, we decided to investigate the evolutionary patterns of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1), in several countries of South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using 454 sequencing. Striking geographic variation in var DBLα types, surprisingly similar to that seen for microsatellite and SNP markers, was observed. Colombia and French Guiana had distinct var DBLα types, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.</description><subject>Antigens</subject><subject>Biological evolution</subject><subject>Epidemics</subject><subject>Erythrocyte membrane protein 1</subject><subject>Erythrocytes</subject><subject>evolutionary structure</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetics</subject><subject>Herd immunity</subject><subject>Immunity</subject><subject>International trade</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Membrane proteins</subject><subject>Microbiology and Parasitology</subject><subject>Microsatellites</subject><subject>Migration</subject><subject>Next-generation sequencing</subject><subject>Original Research</subject><subject>Parasitology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum Erythrocyte Membrane Protein 1</subject><subject>Population genetics</subject><subject>population genomics</subject><subject>Single-nucleotide polymorphism</subject><subject>Vaccination</subject><subject>var genes</subject><subject>Vector-borne diseases</subject><subject>Virulence</subject><subject>Virulence factors</subject><issn>2045-7758</issn><issn>1471-2148</issn><issn>2045-7758</issn><issn>1471-2148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1q3DAQgE1paUKaQ1-gCHppD5tIsmxZPRSWZZsEFlpoexaKNM5qsS1XsjbkYfquHWfTkAZqEB7Qp29-mKJ4y-gZo5Sfg4XyrBS8elEccyqqhZRV8_JJfFScprSj-NWUCypfF0dcsUYqWR0Xv9f70OXJh8HEO5KmmO2UI5DQkm-dSX1wPvekNZ31o4kY9mYXItmb6M0wkZRjaywQjP0NDAQPJOIH8j3kaUuWPURvzSdy1Y8dBnOeRFoUwOgd9N6SKZoh9T4lvEKNm5V78F1nBgtvileYOsHpw_-k-Pll_WN1udh8vbhaLTcLKxpWLbApaiVztWgc5bJ0VLmqMa7kjAtVXkshG0lrAUaCMsYIq0puJLfKMVe2UJ4Unw_eMV_34CwMWFanx-h7HIsOxut_bwa_1Tdhr6ta1YIyFCwOgu2zZ5fLjR5NmiBHTVnNmWjkfuY_PCSM4VeGNGkcgYW5awg5aaawXq5UJRB9_wzdhRwHHMdMYWO8krPw44GyMaQUoX2sglE974me90TPe4Lsu6fdPpJ_twKB8wNw6zu4-79Jr1fr8l75B2vnyoY</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Rougeron, Virginie</creator><creator>Tiedje, Kathryn E.</creator><creator>Chen, Donald S.</creator><creator>Rask, Thomas S.</creator><creator>Gamboa, Dionicia</creator><creator>Maestre, Amanda</creator><creator>Musset, Lise</creator><creator>Legrand, Eric</creator><creator>Noya, Oscar</creator><creator>Yalcindag, Erhan</creator><creator>Renaud, François</creator><creator>Prugnolle, Franck</creator><creator>Day, Karen P.</creator><general>John Wiley &amp; Sons, Inc</general><general>BioMed Central</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5873-5681</orcidid><orcidid>https://orcid.org/0000-0003-0215-4110</orcidid></search><sort><creationdate>201711</creationdate><title>Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance</title><author>Rougeron, Virginie ; Tiedje, Kathryn E. ; Chen, Donald S. ; Rask, Thomas S. ; Gamboa, Dionicia ; Maestre, Amanda ; Musset, Lise ; Legrand, Eric ; Noya, Oscar ; Yalcindag, Erhan ; Renaud, François ; Prugnolle, Franck ; Day, Karen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4815-4070c71d648d0273d09d58ad3212493b74787064ea7e9aaa4c932a72c9d1d3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antigens</topic><topic>Biological evolution</topic><topic>Epidemics</topic><topic>Erythrocyte membrane protein 1</topic><topic>Erythrocytes</topic><topic>evolutionary structure</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetics</topic><topic>Herd immunity</topic><topic>Immunity</topic><topic>International trade</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Membrane proteins</topic><topic>Microbiology and Parasitology</topic><topic>Microsatellites</topic><topic>Migration</topic><topic>Next-generation sequencing</topic><topic>Original Research</topic><topic>Parasitology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum Erythrocyte Membrane Protein 1</topic><topic>Population genetics</topic><topic>population genomics</topic><topic>Single-nucleotide polymorphism</topic><topic>Vaccination</topic><topic>var genes</topic><topic>Vector-borne diseases</topic><topic>Virulence</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rougeron, Virginie</creatorcontrib><creatorcontrib>Tiedje, Kathryn E.</creatorcontrib><creatorcontrib>Chen, Donald S.</creatorcontrib><creatorcontrib>Rask, Thomas S.</creatorcontrib><creatorcontrib>Gamboa, Dionicia</creatorcontrib><creatorcontrib>Maestre, Amanda</creatorcontrib><creatorcontrib>Musset, Lise</creatorcontrib><creatorcontrib>Legrand, Eric</creatorcontrib><creatorcontrib>Noya, Oscar</creatorcontrib><creatorcontrib>Yalcindag, Erhan</creatorcontrib><creatorcontrib>Renaud, François</creatorcontrib><creatorcontrib>Prugnolle, Franck</creatorcontrib><creatorcontrib>Day, Karen P.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rougeron, Virginie</au><au>Tiedje, Kathryn E.</au><au>Chen, Donald S.</au><au>Rask, Thomas S.</au><au>Gamboa, Dionicia</au><au>Maestre, Amanda</au><au>Musset, Lise</au><au>Legrand, Eric</au><au>Noya, Oscar</au><au>Yalcindag, Erhan</au><au>Renaud, François</au><au>Prugnolle, Franck</au><au>Day, Karen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance</atitle><jtitle>BMC evolutionary biology</jtitle><addtitle>Ecol Evol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>7</volume><issue>22</issue><spage>9376</spage><epage>9390</epage><pages>9376-9390</pages><issn>2045-7758</issn><issn>1471-2148</issn><eissn>2045-7758</eissn><eissn>1471-2148</eissn><abstract>Strong founder effects resulting from human migration out of Africa have led to geographic variation in single nucleotide polymorphisms (SNPs) and microsatellites (MS) of the malaria parasite, Plasmodium falciparum. This is particularly striking in South America where two major founder populations of P. falciparum have been identified that are presumed to have arisen from the transatlantic slave trade. Given the importance of the major variant surface antigen of the blood stages of P. falciparum as both a virulence factor and target of immunity, we decided to investigate the population genetics of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1) among several countries in South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using a 454 high throughput sequencing protocol. Striking geographic variation in var DBLα sequences, similar to that seen for SNPs and MS markers, was observed. Colombia and French Guiana had distinct var DBLα sequences, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed. Given the importance of the major variant surface antigen of the blood stages of Plasmodium falciparum as both a virulence factor and target of immunity, we decided to investigate the evolutionary patterns of the genes encoding “Plasmodium falciparum Erythrocyte Membrane Protein 1” (PfEMP1), in several countries of South America, in order to evaluate the transmission patterns of malaria in this continent. Deep sequencing of the DBLα domain of var genes from 128 P. falciparum isolates from five locations in South America was completed using 454 sequencing. Striking geographic variation in var DBLα types, surprisingly similar to that seen for microsatellite and SNP markers, was observed. Colombia and French Guiana had distinct var DBLα types, whereas Peru and Venezuela showed an admixture. The importance of such geographic variation to herd immunity and malaria vaccination is discussed.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29187975</pmid><doi>10.1002/ece3.3425</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5873-5681</orcidid><orcidid>https://orcid.org/0000-0003-0215-4110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-7758
ispartof BMC evolutionary biology, 2017-11, Vol.7 (22), p.9376-9390
issn 2045-7758
1471-2148
2045-7758
1471-2148
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5696401
source Wiley-Blackwell Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antigens
Biological evolution
Epidemics
Erythrocyte membrane protein 1
Erythrocytes
evolutionary structure
Gene sequencing
Genes
Genetics
Herd immunity
Immunity
International trade
Life Sciences
Malaria
Membrane proteins
Microbiology and Parasitology
Microsatellites
Migration
Next-generation sequencing
Original Research
Parasitology
Plasmodium falciparum
Plasmodium falciparum Erythrocyte Membrane Protein 1
Population genetics
population genomics
Single-nucleotide polymorphism
Vaccination
var genes
Vector-borne diseases
Virulence
Virulence factors
title Evolutionary structure of Plasmodium falciparum major variant surface antigen genes in South America: Implications for epidemic transmission and surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20structure%20of%20Plasmodium%20falciparum%20major%20variant%20surface%20antigen%20genes%20in%20South%20America:%20Implications%20for%20epidemic%20transmission%20and%20surveillance&rft.jtitle=BMC%20evolutionary%20biology&rft.au=Rougeron,%20Virginie&rft.date=2017-11&rft.volume=7&rft.issue=22&rft.spage=9376&rft.epage=9390&rft.pages=9376-9390&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.3425&rft_dat=%3Cproquest_pubme%3E1977872571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977872571&rft_id=info:pmid/29187975&rfr_iscdi=true