Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis
Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa , is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2017-12, Vol.101 (23-24), p.8443-8454 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8454 |
---|---|
container_issue | 23-24 |
container_start_page | 8443 |
container_title | Applied microbiology and biotechnology |
container_volume | 101 |
creator | Funston, Scott J. Tsaousi, Konstantina Smyth, Thomas J. Twigg, Matthew S. Marchant, Roger Banat, Ibrahim M. |
description | Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer,
Pseudomonas aeruginosa
, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species
Burkholderia thailandensis
produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in
Burkholderia thailandensis
through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in
B. thailandensis
through comparison with known function genes in
Pseudomonas aeruginosa
. Multiple knockout strains for the
phbA
,
phbB
and
phbC
genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ
phbA
1, Δ
phbB
1 and Δ
phbC
1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ
phbB
1 produced the highest level of purified RL (3.78 g l
−1
) compared to the wild-type strain (1.28 g l
−1
). In Δ
phbB
1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three
phb
mutant strains, although never completely eliminated. These results suggest that, in contrast to
Pseudomonas aeruginosa
, knockout of the PHA synthesis pathway in
Burkholderia thailandensis
could be used to increase rhamnolipid production. The evidence of residual PHA production in the
phb
mutant strains suggests
B. thailandensis
possesses a secondary unelucidated PHA synthesis pathway. |
doi_str_mv | 10.1007/s00253-017-8540-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5694511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514969532</galeid><sourcerecordid>A514969532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEotPCA7BBkdiURYovsZ1skIaqpUiVYAFry2OfmbiTsYOdVDPPwEtzRlNKi0DIC0s-3_l9Ln9RvKLkjBKi3mVCmOAVoapqRE2q7ZNiRmvOKiJp_bSYYUBUSrTNUXGc8w0hlDVSPi-OWEtqzpWcFT8uQmeCBVemzmxC7P3gXTmk6CY7-hhKH8oPU1p3sXeQvCnHzvjeBAch-1yOyYQ8xIzgOkS7jtNYZnz0IZcOlt56CONeY4j9rtu5FLc7069NiGaE8vTL1fxtmXdh7ADVXhTPlqbP8PLuPim-XV58Pb-qrj9__HQ-v66sJGqswCoAxZgFY2XDWu6ALxxVhi0azqEVxEDTEGikMkJya4lprGp5S5hbMuz7pHh_0B2mxQacxRKT6fWQ_MaknY7G68eR4Du9irdayLYWlKLA6Z1Ait8nyKPe-Gyhx7lAnLJmhBDRUIK__w-lrcAVUlILRN_8gd7EKQWcBFJSKEml5L-plelB-7CMWKLdi-q5oHUrW8EZUmd_ofA42HgbA64G3x8l0EOCTTHnBMv7cVCi92bTB7Np9JTem01vMef1wzneZ_xyFwLsAGQMhRWkBx39U_UnFOTiqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965761663</pqid></control><display><type>article</type><title>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Funston, Scott J. ; Tsaousi, Konstantina ; Smyth, Thomas J. ; Twigg, Matthew S. ; Marchant, Roger ; Banat, Ibrahim M.</creator><creatorcontrib>Funston, Scott J. ; Tsaousi, Konstantina ; Smyth, Thomas J. ; Twigg, Matthew S. ; Marchant, Roger ; Banat, Ibrahim M.</creatorcontrib><description>Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer,
Pseudomonas aeruginosa
, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species
Burkholderia thailandensis
produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in
Burkholderia thailandensis
through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in
B. thailandensis
through comparison with known function genes in
Pseudomonas aeruginosa
. Multiple knockout strains for the
phbA
,
phbB
and
phbC
genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ
phbA
1, Δ
phbB
1 and Δ
phbC
1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ
phbB
1 produced the highest level of purified RL (3.78 g l
−1
) compared to the wild-type strain (1.28 g l
−1
). In Δ
phbB
1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three
phb
mutant strains, although never completely eliminated. These results suggest that, in contrast to
Pseudomonas aeruginosa
, knockout of the PHA synthesis pathway in
Burkholderia thailandensis
could be used to increase rhamnolipid production. The evidence of residual PHA production in the
phb
mutant strains suggests
B. thailandensis
possesses a secondary unelucidated PHA synthesis pathway.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-017-8540-x</identifier><identifier>PMID: 29043376</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>animal pathogens ; Applied Genetics and Molecular Biotechnology ; Bacteria ; Bacterial proteins ; Biomedical and Life Sciences ; Biotechnology ; Burkholderia ; Burkholderia - genetics ; Burkholderia - growth & development ; Burkholderia - metabolism ; Burkholderia thailandensis ; Cellular manufacture ; DNA Transposable Elements ; Gene Knockout Techniques ; Genes ; Genetic aspects ; Glycolipids ; Glycolipids - metabolism ; Life Sciences ; Metabolic Engineering ; Microbial Genetics and Genomics ; Microbiology ; Mutagenesis, Insertional ; mutants ; mutation ; Opportunist infection ; Polyhydroxyalkanoates ; Polyhydroxyalkanoates - metabolism ; Polyhydroxyalkanoic acid ; Pseudomonas aeruginosa ; Rhamnolipids ; Strains (organisms) ; Synthesis ; Target recognition ; transposons</subject><ispartof>Applied microbiology and biotechnology, 2017-12, Vol.101 (23-24), p.8443-8454</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</citedby><cites>FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-017-8540-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-017-8540-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29043376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Funston, Scott J.</creatorcontrib><creatorcontrib>Tsaousi, Konstantina</creatorcontrib><creatorcontrib>Smyth, Thomas J.</creatorcontrib><creatorcontrib>Twigg, Matthew S.</creatorcontrib><creatorcontrib>Marchant, Roger</creatorcontrib><creatorcontrib>Banat, Ibrahim M.</creatorcontrib><title>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer,
Pseudomonas aeruginosa
, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species
Burkholderia thailandensis
produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in
Burkholderia thailandensis
through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in
B. thailandensis
through comparison with known function genes in
Pseudomonas aeruginosa
. Multiple knockout strains for the
phbA
,
phbB
and
phbC
genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ
phbA
1, Δ
phbB
1 and Δ
phbC
1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ
phbB
1 produced the highest level of purified RL (3.78 g l
−1
) compared to the wild-type strain (1.28 g l
−1
). In Δ
phbB
1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three
phb
mutant strains, although never completely eliminated. These results suggest that, in contrast to
Pseudomonas aeruginosa
, knockout of the PHA synthesis pathway in
Burkholderia thailandensis
could be used to increase rhamnolipid production. The evidence of residual PHA production in the
phb
mutant strains suggests
B. thailandensis
possesses a secondary unelucidated PHA synthesis pathway.</description><subject>animal pathogens</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Burkholderia</subject><subject>Burkholderia - genetics</subject><subject>Burkholderia - growth & development</subject><subject>Burkholderia - metabolism</subject><subject>Burkholderia thailandensis</subject><subject>Cellular manufacture</subject><subject>DNA Transposable Elements</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glycolipids</subject><subject>Glycolipids - metabolism</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutagenesis, Insertional</subject><subject>mutants</subject><subject>mutation</subject><subject>Opportunist infection</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoates - metabolism</subject><subject>Polyhydroxyalkanoic acid</subject><subject>Pseudomonas aeruginosa</subject><subject>Rhamnolipids</subject><subject>Strains (organisms)</subject><subject>Synthesis</subject><subject>Target recognition</subject><subject>transposons</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkstu1DAUhiMEotPCA7BBkdiURYovsZ1skIaqpUiVYAFry2OfmbiTsYOdVDPPwEtzRlNKi0DIC0s-3_l9Ln9RvKLkjBKi3mVCmOAVoapqRE2q7ZNiRmvOKiJp_bSYYUBUSrTNUXGc8w0hlDVSPi-OWEtqzpWcFT8uQmeCBVemzmxC7P3gXTmk6CY7-hhKH8oPU1p3sXeQvCnHzvjeBAch-1yOyYQ8xIzgOkS7jtNYZnz0IZcOlt56CONeY4j9rtu5FLc7069NiGaE8vTL1fxtmXdh7ADVXhTPlqbP8PLuPim-XV58Pb-qrj9__HQ-v66sJGqswCoAxZgFY2XDWu6ALxxVhi0azqEVxEDTEGikMkJya4lprGp5S5hbMuz7pHh_0B2mxQacxRKT6fWQ_MaknY7G68eR4Du9irdayLYWlKLA6Z1Ait8nyKPe-Gyhx7lAnLJmhBDRUIK__w-lrcAVUlILRN_8gd7EKQWcBFJSKEml5L-plelB-7CMWKLdi-q5oHUrW8EZUmd_ofA42HgbA64G3x8l0EOCTTHnBMv7cVCi92bTB7Np9JTem01vMef1wzneZ_xyFwLsAGQMhRWkBx39U_UnFOTiqQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Funston, Scott J.</creator><creator>Tsaousi, Konstantina</creator><creator>Smyth, Thomas J.</creator><creator>Twigg, Matthew S.</creator><creator>Marchant, Roger</creator><creator>Banat, Ibrahim M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171201</creationdate><title>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</title><author>Funston, Scott J. ; Tsaousi, Konstantina ; Smyth, Thomas J. ; Twigg, Matthew S. ; Marchant, Roger ; Banat, Ibrahim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>animal pathogens</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Burkholderia</topic><topic>Burkholderia - genetics</topic><topic>Burkholderia - growth & development</topic><topic>Burkholderia - metabolism</topic><topic>Burkholderia thailandensis</topic><topic>Cellular manufacture</topic><topic>DNA Transposable Elements</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glycolipids</topic><topic>Glycolipids - metabolism</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutagenesis, Insertional</topic><topic>mutants</topic><topic>mutation</topic><topic>Opportunist infection</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoates - metabolism</topic><topic>Polyhydroxyalkanoic acid</topic><topic>Pseudomonas aeruginosa</topic><topic>Rhamnolipids</topic><topic>Strains (organisms)</topic><topic>Synthesis</topic><topic>Target recognition</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funston, Scott J.</creatorcontrib><creatorcontrib>Tsaousi, Konstantina</creatorcontrib><creatorcontrib>Smyth, Thomas J.</creatorcontrib><creatorcontrib>Twigg, Matthew S.</creatorcontrib><creatorcontrib>Marchant, Roger</creatorcontrib><creatorcontrib>Banat, Ibrahim M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funston, Scott J.</au><au>Tsaousi, Konstantina</au><au>Smyth, Thomas J.</au><au>Twigg, Matthew S.</au><au>Marchant, Roger</au><au>Banat, Ibrahim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>101</volume><issue>23-24</issue><spage>8443</spage><epage>8454</epage><pages>8443-8454</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer,
Pseudomonas aeruginosa
, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species
Burkholderia thailandensis
produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in
Burkholderia thailandensis
through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in
B. thailandensis
through comparison with known function genes in
Pseudomonas aeruginosa
. Multiple knockout strains for the
phbA
,
phbB
and
phbC
genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ
phbA
1, Δ
phbB
1 and Δ
phbC
1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ
phbB
1 produced the highest level of purified RL (3.78 g l
−1
) compared to the wild-type strain (1.28 g l
−1
). In Δ
phbB
1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three
phb
mutant strains, although never completely eliminated. These results suggest that, in contrast to
Pseudomonas aeruginosa
, knockout of the PHA synthesis pathway in
Burkholderia thailandensis
could be used to increase rhamnolipid production. The evidence of residual PHA production in the
phb
mutant strains suggests
B. thailandensis
possesses a secondary unelucidated PHA synthesis pathway.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29043376</pmid><doi>10.1007/s00253-017-8540-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2017-12, Vol.101 (23-24), p.8443-8454 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5694511 |
source | MEDLINE; SpringerLink Journals |
subjects | animal pathogens Applied Genetics and Molecular Biotechnology Bacteria Bacterial proteins Biomedical and Life Sciences Biotechnology Burkholderia Burkholderia - genetics Burkholderia - growth & development Burkholderia - metabolism Burkholderia thailandensis Cellular manufacture DNA Transposable Elements Gene Knockout Techniques Genes Genetic aspects Glycolipids Glycolipids - metabolism Life Sciences Metabolic Engineering Microbial Genetics and Genomics Microbiology Mutagenesis, Insertional mutants mutation Opportunist infection Polyhydroxyalkanoates Polyhydroxyalkanoates - metabolism Polyhydroxyalkanoic acid Pseudomonas aeruginosa Rhamnolipids Strains (organisms) Synthesis Target recognition transposons |
title | Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20rhamnolipid%20production%20in%20Burkholderia%20thailandensis%20transposon%20knockout%20strains%20deficient%20in%20polyhydroxyalkanoate%20(PHA)%20synthesis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Funston,%20Scott%20J.&rft.date=2017-12-01&rft.volume=101&rft.issue=23-24&rft.spage=8443&rft.epage=8454&rft.pages=8443-8454&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-017-8540-x&rft_dat=%3Cgale_pubme%3EA514969532%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965761663&rft_id=info:pmid/29043376&rft_galeid=A514969532&rfr_iscdi=true |