Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis

Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa , is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2017-12, Vol.101 (23-24), p.8443-8454
Hauptverfasser: Funston, Scott J., Tsaousi, Konstantina, Smyth, Thomas J., Twigg, Matthew S., Marchant, Roger, Banat, Ibrahim M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8454
container_issue 23-24
container_start_page 8443
container_title Applied microbiology and biotechnology
container_volume 101
creator Funston, Scott J.
Tsaousi, Konstantina
Smyth, Thomas J.
Twigg, Matthew S.
Marchant, Roger
Banat, Ibrahim M.
description Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa , is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa . Multiple knockout strains for the phbA , phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ phbA 1, Δ phbB 1 and Δ phbC 1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ phbB 1 produced the highest level of purified RL (3.78 g l −1 ) compared to the wild-type strain (1.28 g l −1 ). In Δ phbB 1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa , knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.
doi_str_mv 10.1007/s00253-017-8540-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5694511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514969532</galeid><sourcerecordid>A514969532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEotPCA7BBkdiURYovsZ1skIaqpUiVYAFry2OfmbiTsYOdVDPPwEtzRlNKi0DIC0s-3_l9Ln9RvKLkjBKi3mVCmOAVoapqRE2q7ZNiRmvOKiJp_bSYYUBUSrTNUXGc8w0hlDVSPi-OWEtqzpWcFT8uQmeCBVemzmxC7P3gXTmk6CY7-hhKH8oPU1p3sXeQvCnHzvjeBAch-1yOyYQ8xIzgOkS7jtNYZnz0IZcOlt56CONeY4j9rtu5FLc7069NiGaE8vTL1fxtmXdh7ADVXhTPlqbP8PLuPim-XV58Pb-qrj9__HQ-v66sJGqswCoAxZgFY2XDWu6ALxxVhi0azqEVxEDTEGikMkJya4lprGp5S5hbMuz7pHh_0B2mxQacxRKT6fWQ_MaknY7G68eR4Du9irdayLYWlKLA6Z1Ait8nyKPe-Gyhx7lAnLJmhBDRUIK__w-lrcAVUlILRN_8gd7EKQWcBFJSKEml5L-plelB-7CMWKLdi-q5oHUrW8EZUmd_ofA42HgbA64G3x8l0EOCTTHnBMv7cVCi92bTB7Np9JTem01vMef1wzneZ_xyFwLsAGQMhRWkBx39U_UnFOTiqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965761663</pqid></control><display><type>article</type><title>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Funston, Scott J. ; Tsaousi, Konstantina ; Smyth, Thomas J. ; Twigg, Matthew S. ; Marchant, Roger ; Banat, Ibrahim M.</creator><creatorcontrib>Funston, Scott J. ; Tsaousi, Konstantina ; Smyth, Thomas J. ; Twigg, Matthew S. ; Marchant, Roger ; Banat, Ibrahim M.</creatorcontrib><description>Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa , is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa . Multiple knockout strains for the phbA , phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ phbA 1, Δ phbB 1 and Δ phbC 1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ phbB 1 produced the highest level of purified RL (3.78 g l −1 ) compared to the wild-type strain (1.28 g l −1 ). In Δ phbB 1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa , knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-017-8540-x</identifier><identifier>PMID: 29043376</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>animal pathogens ; Applied Genetics and Molecular Biotechnology ; Bacteria ; Bacterial proteins ; Biomedical and Life Sciences ; Biotechnology ; Burkholderia ; Burkholderia - genetics ; Burkholderia - growth &amp; development ; Burkholderia - metabolism ; Burkholderia thailandensis ; Cellular manufacture ; DNA Transposable Elements ; Gene Knockout Techniques ; Genes ; Genetic aspects ; Glycolipids ; Glycolipids - metabolism ; Life Sciences ; Metabolic Engineering ; Microbial Genetics and Genomics ; Microbiology ; Mutagenesis, Insertional ; mutants ; mutation ; Opportunist infection ; Polyhydroxyalkanoates ; Polyhydroxyalkanoates - metabolism ; Polyhydroxyalkanoic acid ; Pseudomonas aeruginosa ; Rhamnolipids ; Strains (organisms) ; Synthesis ; Target recognition ; transposons</subject><ispartof>Applied microbiology and biotechnology, 2017-12, Vol.101 (23-24), p.8443-8454</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</citedby><cites>FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-017-8540-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-017-8540-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29043376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Funston, Scott J.</creatorcontrib><creatorcontrib>Tsaousi, Konstantina</creatorcontrib><creatorcontrib>Smyth, Thomas J.</creatorcontrib><creatorcontrib>Twigg, Matthew S.</creatorcontrib><creatorcontrib>Marchant, Roger</creatorcontrib><creatorcontrib>Banat, Ibrahim M.</creatorcontrib><title>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa , is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa . Multiple knockout strains for the phbA , phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ phbA 1, Δ phbB 1 and Δ phbC 1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ phbB 1 produced the highest level of purified RL (3.78 g l −1 ) compared to the wild-type strain (1.28 g l −1 ). In Δ phbB 1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa , knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.</description><subject>animal pathogens</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Burkholderia</subject><subject>Burkholderia - genetics</subject><subject>Burkholderia - growth &amp; development</subject><subject>Burkholderia - metabolism</subject><subject>Burkholderia thailandensis</subject><subject>Cellular manufacture</subject><subject>DNA Transposable Elements</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glycolipids</subject><subject>Glycolipids - metabolism</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutagenesis, Insertional</subject><subject>mutants</subject><subject>mutation</subject><subject>Opportunist infection</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoates - metabolism</subject><subject>Polyhydroxyalkanoic acid</subject><subject>Pseudomonas aeruginosa</subject><subject>Rhamnolipids</subject><subject>Strains (organisms)</subject><subject>Synthesis</subject><subject>Target recognition</subject><subject>transposons</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkstu1DAUhiMEotPCA7BBkdiURYovsZ1skIaqpUiVYAFry2OfmbiTsYOdVDPPwEtzRlNKi0DIC0s-3_l9Ln9RvKLkjBKi3mVCmOAVoapqRE2q7ZNiRmvOKiJp_bSYYUBUSrTNUXGc8w0hlDVSPi-OWEtqzpWcFT8uQmeCBVemzmxC7P3gXTmk6CY7-hhKH8oPU1p3sXeQvCnHzvjeBAch-1yOyYQ8xIzgOkS7jtNYZnz0IZcOlt56CONeY4j9rtu5FLc7069NiGaE8vTL1fxtmXdh7ADVXhTPlqbP8PLuPim-XV58Pb-qrj9__HQ-v66sJGqswCoAxZgFY2XDWu6ALxxVhi0azqEVxEDTEGikMkJya4lprGp5S5hbMuz7pHh_0B2mxQacxRKT6fWQ_MaknY7G68eR4Du9irdayLYWlKLA6Z1Ait8nyKPe-Gyhx7lAnLJmhBDRUIK__w-lrcAVUlILRN_8gd7EKQWcBFJSKEml5L-plelB-7CMWKLdi-q5oHUrW8EZUmd_ofA42HgbA64G3x8l0EOCTTHnBMv7cVCi92bTB7Np9JTem01vMef1wzneZ_xyFwLsAGQMhRWkBx39U_UnFOTiqQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Funston, Scott J.</creator><creator>Tsaousi, Konstantina</creator><creator>Smyth, Thomas J.</creator><creator>Twigg, Matthew S.</creator><creator>Marchant, Roger</creator><creator>Banat, Ibrahim M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171201</creationdate><title>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</title><author>Funston, Scott J. ; Tsaousi, Konstantina ; Smyth, Thomas J. ; Twigg, Matthew S. ; Marchant, Roger ; Banat, Ibrahim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-ec7ee722ceac68293de3bd17a2b833e950ae880e867a563cc0a8c793902df2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>animal pathogens</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Burkholderia</topic><topic>Burkholderia - genetics</topic><topic>Burkholderia - growth &amp; development</topic><topic>Burkholderia - metabolism</topic><topic>Burkholderia thailandensis</topic><topic>Cellular manufacture</topic><topic>DNA Transposable Elements</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glycolipids</topic><topic>Glycolipids - metabolism</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutagenesis, Insertional</topic><topic>mutants</topic><topic>mutation</topic><topic>Opportunist infection</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoates - metabolism</topic><topic>Polyhydroxyalkanoic acid</topic><topic>Pseudomonas aeruginosa</topic><topic>Rhamnolipids</topic><topic>Strains (organisms)</topic><topic>Synthesis</topic><topic>Target recognition</topic><topic>transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funston, Scott J.</creatorcontrib><creatorcontrib>Tsaousi, Konstantina</creatorcontrib><creatorcontrib>Smyth, Thomas J.</creatorcontrib><creatorcontrib>Twigg, Matthew S.</creatorcontrib><creatorcontrib>Marchant, Roger</creatorcontrib><creatorcontrib>Banat, Ibrahim M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funston, Scott J.</au><au>Tsaousi, Konstantina</au><au>Smyth, Thomas J.</au><au>Twigg, Matthew S.</au><au>Marchant, Roger</au><au>Banat, Ibrahim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>101</volume><issue>23-24</issue><spage>8443</spage><epage>8454</epage><pages>8443-8454</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa , is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa . Multiple knockout strains for the phbA , phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (Δ phbA 1, Δ phbB 1 and Δ phbC 1) with the best enhancement of rhamnolipid production were selected for detailed study. Δ phbB 1 produced the highest level of purified RL (3.78 g l −1 ) compared to the wild-type strain (1.28 g l −1 ). In Δ phbB 1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa , knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29043376</pmid><doi>10.1007/s00253-017-8540-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2017-12, Vol.101 (23-24), p.8443-8454
issn 0175-7598
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5694511
source MEDLINE; SpringerLink Journals
subjects animal pathogens
Applied Genetics and Molecular Biotechnology
Bacteria
Bacterial proteins
Biomedical and Life Sciences
Biotechnology
Burkholderia
Burkholderia - genetics
Burkholderia - growth & development
Burkholderia - metabolism
Burkholderia thailandensis
Cellular manufacture
DNA Transposable Elements
Gene Knockout Techniques
Genes
Genetic aspects
Glycolipids
Glycolipids - metabolism
Life Sciences
Metabolic Engineering
Microbial Genetics and Genomics
Microbiology
Mutagenesis, Insertional
mutants
mutation
Opportunist infection
Polyhydroxyalkanoates
Polyhydroxyalkanoates - metabolism
Polyhydroxyalkanoic acid
Pseudomonas aeruginosa
Rhamnolipids
Strains (organisms)
Synthesis
Target recognition
transposons
title Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20rhamnolipid%20production%20in%20Burkholderia%20thailandensis%20transposon%20knockout%20strains%20deficient%20in%20polyhydroxyalkanoate%20(PHA)%20synthesis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Funston,%20Scott%20J.&rft.date=2017-12-01&rft.volume=101&rft.issue=23-24&rft.spage=8443&rft.epage=8454&rft.pages=8443-8454&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-017-8540-x&rft_dat=%3Cgale_pubme%3EA514969532%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965761663&rft_id=info:pmid/29043376&rft_galeid=A514969532&rfr_iscdi=true