NIMG-66. A METHOD FOR RAPIDLY CREATING HEAD MODELS OF GLIOBLASTOMA PATIENTS FOR STUDYING THE DELIVERY OF TTFIELDS TO THE BRAIN

Computational studies simulating the delivery of TTFields to realistic head models are a standard method for investigating TTFields distribution in the brain. These studies are useful as they allow estimation of field distributions without the need for invasive physical measurements. Creating realis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2017-11, Vol.19 (suppl_6), p.vi157-vi157
Hauptverfasser: Urman, Noa, Frenkel, Avital, Levi, Shay, Doron, Manzur, Naveh, Ariel, Hershkovich, Hadas Sara, Weinberg, Uri, Wenger, Cornelia, Kirson, Eilon D, Bomzon, Ze’ev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page vi157
container_issue suppl_6
container_start_page vi157
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 19
creator Urman, Noa
Frenkel, Avital
Levi, Shay
Doron, Manzur
Naveh, Ariel
Hershkovich, Hadas Sara
Weinberg, Uri
Wenger, Cornelia
Kirson, Eilon D
Bomzon, Ze’ev
description Computational studies simulating the delivery of TTFields to realistic head models are a standard method for investigating TTFields distribution in the brain. These studies are useful as they allow estimation of field distributions without the need for invasive physical measurements. Creating realistic head models of patients is labor-intensive because it requires accurate segmentation of patient’s MRI data-sets. This limits the usefulness of standard methods for creating head models in studies that require a large number of realistic head models, such as studies investigating connections between field intensity distributions and disease progression. Here we present a method for creating realistic models of Glioblastoma Multiforme (GBM) patients that overcomes this limitation. A prerequisite for our method is the creation of a highly detailed healthy head model which serves as a deformable template from which patient models can be created. When creating patient models, the tumor in the patient’s MRI is first segmented. Next, non-rigid registration algorithms are used to register the healthy regions of the patient head MRI images on to a 3D image representing the deformable template. This yields a non-rigid mapping of the patient’s head in to the template space, as well as the inverse transformation that maps the template in to the patient space. The inverse transformation is applied to the 3D deformable template and an approximation of the patient head in the absence of a tumor is found. Finally, the segmented tumor is planted back into the deformed template to yield a full patient model. Comparison of the models to patient MRIs reveals good representation of the patient anatomy within the model. This method enables rigorous investigation of important clinical questions related to the connection between TTFields distribution with the brain and disease progression.
doi_str_mv 10.1093/neuonc/nox168.639
format Article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5692256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5692256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1409-3d490e1077e01bbb96227e79179d2d1199eeaccbc8fc9baa2ad688ec7866cb6b3</originalsourceid><addsrcrecordid>eNpVkctKw0AUhoMoWKsP4G5eIO3MpJlkNkLaTC6QS0mmQldDMplqpU1KYkVXvorP4pOZNiK4OgfO__1w-DTtHsEJgtSY1urY1HJaN--I2BNi0AtthExs6KZNyOV5x7ptIutau-m6FwgxMgkaaZ9JGPs6IRPgfH_FjAepC7w0A5mzDN1oDRYZc3iY-CBgjgvi1GVRDlIP-FGYziMn52nsgGUfYQnPz2TOV-76RPCAgT4ePrJsfUI490IWuTng6fk2z5wwudWuNsWuU3e_c6ytPMYXgR6lfrhwIl2iGaS6Uc0oVAhaloKoLEtKMLaURZFFK1whRKlShZSltDeSlkWBi4rYtpJW_70sSWmMtYeh93As96qSqn5ti504tNt90X6IptiK_5d6-yyemjdhEoqxSfoCNBTItum6Vm3-WATFSYEYFIhBgegVGD_QG3Vc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NIMG-66. A METHOD FOR RAPIDLY CREATING HEAD MODELS OF GLIOBLASTOMA PATIENTS FOR STUDYING THE DELIVERY OF TTFIELDS TO THE BRAIN</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Urman, Noa ; Frenkel, Avital ; Levi, Shay ; Doron, Manzur ; Naveh, Ariel ; Hershkovich, Hadas Sara ; Weinberg, Uri ; Wenger, Cornelia ; Kirson, Eilon D ; Bomzon, Ze’ev</creator><creatorcontrib>Urman, Noa ; Frenkel, Avital ; Levi, Shay ; Doron, Manzur ; Naveh, Ariel ; Hershkovich, Hadas Sara ; Weinberg, Uri ; Wenger, Cornelia ; Kirson, Eilon D ; Bomzon, Ze’ev</creatorcontrib><description>Computational studies simulating the delivery of TTFields to realistic head models are a standard method for investigating TTFields distribution in the brain. These studies are useful as they allow estimation of field distributions without the need for invasive physical measurements. Creating realistic head models of patients is labor-intensive because it requires accurate segmentation of patient’s MRI data-sets. This limits the usefulness of standard methods for creating head models in studies that require a large number of realistic head models, such as studies investigating connections between field intensity distributions and disease progression. Here we present a method for creating realistic models of Glioblastoma Multiforme (GBM) patients that overcomes this limitation. A prerequisite for our method is the creation of a highly detailed healthy head model which serves as a deformable template from which patient models can be created. When creating patient models, the tumor in the patient’s MRI is first segmented. Next, non-rigid registration algorithms are used to register the healthy regions of the patient head MRI images on to a 3D image representing the deformable template. This yields a non-rigid mapping of the patient’s head in to the template space, as well as the inverse transformation that maps the template in to the patient space. The inverse transformation is applied to the 3D deformable template and an approximation of the patient head in the absence of a tumor is found. Finally, the segmented tumor is planted back into the deformed template to yield a full patient model. Comparison of the models to patient MRIs reveals good representation of the patient anatomy within the model. This method enables rigorous investigation of important clinical questions related to the connection between TTFields distribution with the brain and disease progression.</description><identifier>ISSN: 1522-8517</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/nox168.639</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Abstracts</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2017-11, Vol.19 (suppl_6), p.vi157-vi157</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5692256/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5692256/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Urman, Noa</creatorcontrib><creatorcontrib>Frenkel, Avital</creatorcontrib><creatorcontrib>Levi, Shay</creatorcontrib><creatorcontrib>Doron, Manzur</creatorcontrib><creatorcontrib>Naveh, Ariel</creatorcontrib><creatorcontrib>Hershkovich, Hadas Sara</creatorcontrib><creatorcontrib>Weinberg, Uri</creatorcontrib><creatorcontrib>Wenger, Cornelia</creatorcontrib><creatorcontrib>Kirson, Eilon D</creatorcontrib><creatorcontrib>Bomzon, Ze’ev</creatorcontrib><title>NIMG-66. A METHOD FOR RAPIDLY CREATING HEAD MODELS OF GLIOBLASTOMA PATIENTS FOR STUDYING THE DELIVERY OF TTFIELDS TO THE BRAIN</title><title>Neuro-oncology (Charlottesville, Va.)</title><description>Computational studies simulating the delivery of TTFields to realistic head models are a standard method for investigating TTFields distribution in the brain. These studies are useful as they allow estimation of field distributions without the need for invasive physical measurements. Creating realistic head models of patients is labor-intensive because it requires accurate segmentation of patient’s MRI data-sets. This limits the usefulness of standard methods for creating head models in studies that require a large number of realistic head models, such as studies investigating connections between field intensity distributions and disease progression. Here we present a method for creating realistic models of Glioblastoma Multiforme (GBM) patients that overcomes this limitation. A prerequisite for our method is the creation of a highly detailed healthy head model which serves as a deformable template from which patient models can be created. When creating patient models, the tumor in the patient’s MRI is first segmented. Next, non-rigid registration algorithms are used to register the healthy regions of the patient head MRI images on to a 3D image representing the deformable template. This yields a non-rigid mapping of the patient’s head in to the template space, as well as the inverse transformation that maps the template in to the patient space. The inverse transformation is applied to the 3D deformable template and an approximation of the patient head in the absence of a tumor is found. Finally, the segmented tumor is planted back into the deformed template to yield a full patient model. Comparison of the models to patient MRIs reveals good representation of the patient anatomy within the model. This method enables rigorous investigation of important clinical questions related to the connection between TTFields distribution with the brain and disease progression.</description><subject>Abstracts</subject><issn>1522-8517</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkctKw0AUhoMoWKsP4G5eIO3MpJlkNkLaTC6QS0mmQldDMplqpU1KYkVXvorP4pOZNiK4OgfO__1w-DTtHsEJgtSY1urY1HJaN--I2BNi0AtthExs6KZNyOV5x7ptIutau-m6FwgxMgkaaZ9JGPs6IRPgfH_FjAepC7w0A5mzDN1oDRYZc3iY-CBgjgvi1GVRDlIP-FGYziMn52nsgGUfYQnPz2TOV-76RPCAgT4ePrJsfUI490IWuTng6fk2z5wwudWuNsWuU3e_c6ytPMYXgR6lfrhwIl2iGaS6Uc0oVAhaloKoLEtKMLaURZFFK1whRKlShZSltDeSlkWBi4rYtpJW_70sSWmMtYeh93As96qSqn5ti504tNt90X6IptiK_5d6-yyemjdhEoqxSfoCNBTItum6Vm3-WATFSYEYFIhBgegVGD_QG3Vc</recordid><startdate>20171106</startdate><enddate>20171106</enddate><creator>Urman, Noa</creator><creator>Frenkel, Avital</creator><creator>Levi, Shay</creator><creator>Doron, Manzur</creator><creator>Naveh, Ariel</creator><creator>Hershkovich, Hadas Sara</creator><creator>Weinberg, Uri</creator><creator>Wenger, Cornelia</creator><creator>Kirson, Eilon D</creator><creator>Bomzon, Ze’ev</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171106</creationdate><title>NIMG-66. A METHOD FOR RAPIDLY CREATING HEAD MODELS OF GLIOBLASTOMA PATIENTS FOR STUDYING THE DELIVERY OF TTFIELDS TO THE BRAIN</title><author>Urman, Noa ; Frenkel, Avital ; Levi, Shay ; Doron, Manzur ; Naveh, Ariel ; Hershkovich, Hadas Sara ; Weinberg, Uri ; Wenger, Cornelia ; Kirson, Eilon D ; Bomzon, Ze’ev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1409-3d490e1077e01bbb96227e79179d2d1199eeaccbc8fc9baa2ad688ec7866cb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstracts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urman, Noa</creatorcontrib><creatorcontrib>Frenkel, Avital</creatorcontrib><creatorcontrib>Levi, Shay</creatorcontrib><creatorcontrib>Doron, Manzur</creatorcontrib><creatorcontrib>Naveh, Ariel</creatorcontrib><creatorcontrib>Hershkovich, Hadas Sara</creatorcontrib><creatorcontrib>Weinberg, Uri</creatorcontrib><creatorcontrib>Wenger, Cornelia</creatorcontrib><creatorcontrib>Kirson, Eilon D</creatorcontrib><creatorcontrib>Bomzon, Ze’ev</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urman, Noa</au><au>Frenkel, Avital</au><au>Levi, Shay</au><au>Doron, Manzur</au><au>Naveh, Ariel</au><au>Hershkovich, Hadas Sara</au><au>Weinberg, Uri</au><au>Wenger, Cornelia</au><au>Kirson, Eilon D</au><au>Bomzon, Ze’ev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIMG-66. A METHOD FOR RAPIDLY CREATING HEAD MODELS OF GLIOBLASTOMA PATIENTS FOR STUDYING THE DELIVERY OF TTFIELDS TO THE BRAIN</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><date>2017-11-06</date><risdate>2017</risdate><volume>19</volume><issue>suppl_6</issue><spage>vi157</spage><epage>vi157</epage><pages>vi157-vi157</pages><issn>1522-8517</issn><eissn>1523-5866</eissn><abstract>Computational studies simulating the delivery of TTFields to realistic head models are a standard method for investigating TTFields distribution in the brain. These studies are useful as they allow estimation of field distributions without the need for invasive physical measurements. Creating realistic head models of patients is labor-intensive because it requires accurate segmentation of patient’s MRI data-sets. This limits the usefulness of standard methods for creating head models in studies that require a large number of realistic head models, such as studies investigating connections between field intensity distributions and disease progression. Here we present a method for creating realistic models of Glioblastoma Multiforme (GBM) patients that overcomes this limitation. A prerequisite for our method is the creation of a highly detailed healthy head model which serves as a deformable template from which patient models can be created. When creating patient models, the tumor in the patient’s MRI is first segmented. Next, non-rigid registration algorithms are used to register the healthy regions of the patient head MRI images on to a 3D image representing the deformable template. This yields a non-rigid mapping of the patient’s head in to the template space, as well as the inverse transformation that maps the template in to the patient space. The inverse transformation is applied to the 3D deformable template and an approximation of the patient head in the absence of a tumor is found. Finally, the segmented tumor is planted back into the deformed template to yield a full patient model. Comparison of the models to patient MRIs reveals good representation of the patient anatomy within the model. This method enables rigorous investigation of important clinical questions related to the connection between TTFields distribution with the brain and disease progression.</abstract><cop>US</cop><pub>Oxford University Press</pub><doi>10.1093/neuonc/nox168.639</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2017-11, Vol.19 (suppl_6), p.vi157-vi157
issn 1522-8517
1523-5866
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5692256
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central
subjects Abstracts
title NIMG-66. A METHOD FOR RAPIDLY CREATING HEAD MODELS OF GLIOBLASTOMA PATIENTS FOR STUDYING THE DELIVERY OF TTFIELDS TO THE BRAIN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIMG-66.%20A%C2%A0METHOD%20FOR%20RAPIDLY%20CREATING%20HEAD%20MODELS%20OF%20GLIOBLASTOMA%20PATIENTS%20FOR%20STUDYING%20THE%20DELIVERY%20OF%20TTFIELDS%20TO%20THE%20BRAIN&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Urman,%20Noa&rft.date=2017-11-06&rft.volume=19&rft.issue=suppl_6&rft.spage=vi157&rft.epage=vi157&rft.pages=vi157-vi157&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/nox168.639&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5692256%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true