Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress

Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma . Nitric oxide is reported to play an important role in al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.15694-14, Article 15694
Hauptverfasser: Chen, Cheng, Li, Qiang, Wang, Qiangfeng, Lu, Daihua, Zhang, Hong, Wang, Jian, Fu, Rongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 15694
container_title Scientific reports
container_volume 7
creator Chen, Cheng
Li, Qiang
Wang, Qiangfeng
Lu, Daihua
Zhang, Hong
Wang, Jian
Fu, Rongtao
description Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma . Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), “probable stress-induced proteins”, and unigenes involved in “D-amino-acid oxidase activity” and “oxidoreductase activity” were significantly up-regulated in G. oregonense subjected to HS ( P  
doi_str_mv 10.1038/s41598-017-15340-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5691203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966240272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f57ef85621467afe21db13fe02ec8bd7aed5f4394a9b404529e17641639b22fa3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEaqvSF-gBWeLCJcX_s74goQpKpUpcytlyknHiKmsvHm8pj8Bb4-2WakHCF488v_nGM1_TnDN6wahYvUfJlFm1lHUtU0LSVr9oTjiVquWC85cH8XFzhnhH61HcSGaOmmNumNSGqZPm1212EYccNiWk6BayycmHJcRpF92HEZBE-EFCxDDNBWtQEikzkJwWIMmTGEoOA0kPla1ZAnF2cdgJXLmYRshrR1KGKUWIWMsAA5ZKAKlCM7hCsNRHfN288m5BOHu6T5tvnz_dXn5pb75eXV9-vGkH2cnSetWBXynN6wSd88DZ2DPhgXIYVv3YORiVl8JIZ3pZV8ANsE5LpoXpOfdOnDYf9rqbbb-GcYBYslvsJoe1yz9tcsH-nYlhtlO6t6pujFNRBd49CeT0fQtY7DrgAMviIqQtWma05pLyjlf07T_oXdrmuuZHSjHNJNtRfE8NOSFm8M-fYdTuzLZ7s2012z6abXUtenM4xnPJH2srIPYA1lScIB_0_r_sb40euJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965161412</pqid></control><display><type>article</type><title>Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Cheng ; Li, Qiang ; Wang, Qiangfeng ; Lu, Daihua ; Zhang, Hong ; Wang, Jian ; Fu, Rongtao</creator><creatorcontrib>Chen, Cheng ; Li, Qiang ; Wang, Qiangfeng ; Lu, Daihua ; Zhang, Hong ; Wang, Jian ; Fu, Rongtao</creatorcontrib><description>Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma . Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), “probable stress-induced proteins”, and unigenes involved in “D-amino-acid oxidase activity” and “oxidoreductase activity” were significantly up-regulated in G. oregonense subjected to HS ( P  &lt; 0.05). The significantly up-regulated HSPs, “monooxygenases”, “alcohol dehydrogenase”, and “FAD/NAD(P)-binding domain-containing proteins” ( P  &lt; 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense . These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-15340-6</identifier><identifier>PMID: 29146915</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/90 ; 38/91 ; 631/326/171 ; 631/326/193 ; Alcohol dehydrogenase ; Chinese medicine ; Climate change ; D-Amino-acid oxidase ; Fungi ; Gene expression ; Global warming ; Glossosoma oregonense ; Heat shock proteins ; Heat stress ; Heat tolerance ; Herbal medicine ; Humanities and Social Sciences ; multidisciplinary ; Mycelia ; NAD ; Nitric oxide ; Oxidoreductase ; Proteins ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Traditional Chinese medicine ; Transcription</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.15694-14, Article 15694</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f57ef85621467afe21db13fe02ec8bd7aed5f4394a9b404529e17641639b22fa3</citedby><cites>FETCH-LOGICAL-c474t-f57ef85621467afe21db13fe02ec8bd7aed5f4394a9b404529e17641639b22fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691203/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691203/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29146915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, Qiangfeng</creatorcontrib><creatorcontrib>Lu, Daihua</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Fu, Rongtao</creatorcontrib><title>Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma . Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), “probable stress-induced proteins”, and unigenes involved in “D-amino-acid oxidase activity” and “oxidoreductase activity” were significantly up-regulated in G. oregonense subjected to HS ( P  &lt; 0.05). The significantly up-regulated HSPs, “monooxygenases”, “alcohol dehydrogenase”, and “FAD/NAD(P)-binding domain-containing proteins” ( P  &lt; 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense . These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.</description><subject>38</subject><subject>38/90</subject><subject>38/91</subject><subject>631/326/171</subject><subject>631/326/193</subject><subject>Alcohol dehydrogenase</subject><subject>Chinese medicine</subject><subject>Climate change</subject><subject>D-Amino-acid oxidase</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Global warming</subject><subject>Glossosoma oregonense</subject><subject>Heat shock proteins</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Herbal medicine</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Mycelia</subject><subject>NAD</subject><subject>Nitric oxide</subject><subject>Oxidoreductase</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Traditional Chinese medicine</subject><subject>Transcription</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9u1DAQxiMEaqvSF-gBWeLCJcX_s74goQpKpUpcytlyknHiKmsvHm8pj8Bb4-2WakHCF488v_nGM1_TnDN6wahYvUfJlFm1lHUtU0LSVr9oTjiVquWC85cH8XFzhnhH61HcSGaOmmNumNSGqZPm1212EYccNiWk6BayycmHJcRpF92HEZBE-EFCxDDNBWtQEikzkJwWIMmTGEoOA0kPla1ZAnF2cdgJXLmYRshrR1KGKUWIWMsAA5ZKAKlCM7hCsNRHfN288m5BOHu6T5tvnz_dXn5pb75eXV9-vGkH2cnSetWBXynN6wSd88DZ2DPhgXIYVv3YORiVl8JIZ3pZV8ANsE5LpoXpOfdOnDYf9rqbbb-GcYBYslvsJoe1yz9tcsH-nYlhtlO6t6pujFNRBd49CeT0fQtY7DrgAMviIqQtWma05pLyjlf07T_oXdrmuuZHSjHNJNtRfE8NOSFm8M-fYdTuzLZ7s2012z6abXUtenM4xnPJH2srIPYA1lScIB_0_r_sb40euJA</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Chen, Cheng</creator><creator>Li, Qiang</creator><creator>Wang, Qiangfeng</creator><creator>Lu, Daihua</creator><creator>Zhang, Hong</creator><creator>Wang, Jian</creator><creator>Fu, Rongtao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171116</creationdate><title>Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress</title><author>Chen, Cheng ; Li, Qiang ; Wang, Qiangfeng ; Lu, Daihua ; Zhang, Hong ; Wang, Jian ; Fu, Rongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f57ef85621467afe21db13fe02ec8bd7aed5f4394a9b404529e17641639b22fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38</topic><topic>38/90</topic><topic>38/91</topic><topic>631/326/171</topic><topic>631/326/193</topic><topic>Alcohol dehydrogenase</topic><topic>Chinese medicine</topic><topic>Climate change</topic><topic>D-Amino-acid oxidase</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Global warming</topic><topic>Glossosoma oregonense</topic><topic>Heat shock proteins</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Herbal medicine</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Mycelia</topic><topic>NAD</topic><topic>Nitric oxide</topic><topic>Oxidoreductase</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Traditional Chinese medicine</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, Qiangfeng</creatorcontrib><creatorcontrib>Lu, Daihua</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Fu, Rongtao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cheng</au><au>Li, Qiang</au><au>Wang, Qiangfeng</au><au>Lu, Daihua</au><au>Zhang, Hong</au><au>Wang, Jian</au><au>Fu, Rongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>15694</spage><epage>14</epage><pages>15694-14</pages><artnum>15694</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma . Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), “probable stress-induced proteins”, and unigenes involved in “D-amino-acid oxidase activity” and “oxidoreductase activity” were significantly up-regulated in G. oregonense subjected to HS ( P  &lt; 0.05). The significantly up-regulated HSPs, “monooxygenases”, “alcohol dehydrogenase”, and “FAD/NAD(P)-binding domain-containing proteins” ( P  &lt; 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense . These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29146915</pmid><doi>10.1038/s41598-017-15340-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.15694-14, Article 15694
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5691203
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 38
38/90
38/91
631/326/171
631/326/193
Alcohol dehydrogenase
Chinese medicine
Climate change
D-Amino-acid oxidase
Fungi
Gene expression
Global warming
Glossosoma oregonense
Heat shock proteins
Heat stress
Heat tolerance
Herbal medicine
Humanities and Social Sciences
multidisciplinary
Mycelia
NAD
Nitric oxide
Oxidoreductase
Proteins
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Traditional Chinese medicine
Transcription
title Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20provides%20new%20insights%20into%20the%20role%20of%20nitric%20oxide%20in%20enhancing%20Ganoderma%20oregonense%20resistance%20to%20heat%20stress&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Cheng&rft.date=2017-11-16&rft.volume=7&rft.issue=1&rft.spage=15694&rft.epage=14&rft.pages=15694-14&rft.artnum=15694&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-15340-6&rft_dat=%3Cproquest_pubme%3E1966240272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965161412&rft_id=info:pmid/29146915&rfr_iscdi=true