5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins
Glioblastoma (GBM) contains diverse microenvironments with uneven distributions of oncogenic alterations and signaling networks. The diffusely infiltrative properties of GBM result in residual tumor at neurosurgical resection margins, representing the source of relapse in nearly all cases and sugges...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-11, Vol.7 (1), p.15593-11, Article 15593 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 15593 |
container_title | Scientific reports |
container_volume | 7 |
creator | Ross, James L. Cooper, Lee A. D. Kong, Jun Gutman, David Williams, Merete Tucker-Burden, Carol McCrary, Myles R. Bouras, Alexandros Kaluzova, Milota Dunn, William D. Duong, Duc Hadjipanayis, Constantinos G. Brat, Daniel J. |
description | Glioblastoma (GBM) contains diverse microenvironments with uneven distributions of oncogenic alterations and signaling networks. The diffusely infiltrative properties of GBM result in residual tumor at neurosurgical resection margins, representing the source of relapse in nearly all cases and suggesting that therapeutic efforts should be focused there. To identify signaling networks and potential druggable targets across tumor microenvironments (TMEs), we utilized 5-ALA fluorescence-guided neurosurgical resection and sampling, followed by proteomic analysis of specific TMEs. Reverse phase protein array (RPPA) was performed on 205 proteins isolated from the tumor margin, tumor bulk, and perinecrotic regions of 13 previously untreated, clinically-annotated and genetically-defined high grade gliomas. Differential protein and pathway signatures were established and then validated using western blotting, immunohistochemistry, and comparable TCGA RPPA datasets. We identified 37 proteins differentially expressed across high-grade glioma TMEs. We demonstrate that tumor margins were characterized by pro-survival and anti-apoptotic proteins, whereas perinecrotic regions were enriched for pro-coagulant and DNA damage response proteins. In both our patient cohort and TCGA cases, the data suggest that TMEs possess distinct protein expression profiles that are biologically and therapeutically relevant. |
doi_str_mv | 10.1038/s41598-017-15849-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5688093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965247030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-71e9ecfba5d122812cf8aec1f770a510240ffb4402ad8c40f3891c6d2611796d3</originalsourceid><addsrcrecordid>eNp1kUFvFCEUxydGY5vaL-DBkHjxMgoMzMDFZNPUdZM2mqyeCcvA-BoGVpiZxqPfXNytzWoilwe83_vzeP-qeknwW4Ib8S4zwqWoMelqwgWT9f2T6pxixmvaUPr0ZH9WXeZ8h8viVDIin1dnVBJGqezOq5-8Xo0QorfL7CGAQSsDPVrP0NsebfW4L7cDig6tPcSd13mKo0a3YFK0YYEUw2jDlNGmLwEc2Iw-p1hv57TAoj3awhD0QUNPaBMc-CnpCRaLbnUaIOQX1TOnfbaXD_Gi-vrh-svVx_rm03pztbqpDWd4qjtipTVup3lPKBWEGie0NcR1HdacYMqwczvGMNW9MOXQCElM29OWkE62fXNRvT_q7ufdaHtT2k3aq32CUacfKmpQf2cCfFNDXBRvhcCyKQJvHgRS_D7bPKkRsrHe62DjnBWRLaesww0u6Ot_0Ls4pzKHA8U4F7QVhaJHqswy52TdYzMEq98mq6PJqpisDiar-1L06vQbjyV_LC1AcwRySYXBppO3_y_7Cwdmta8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964558268</pqid></control><display><type>article</type><title>5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ross, James L. ; Cooper, Lee A. D. ; Kong, Jun ; Gutman, David ; Williams, Merete ; Tucker-Burden, Carol ; McCrary, Myles R. ; Bouras, Alexandros ; Kaluzova, Milota ; Dunn, William D. ; Duong, Duc ; Hadjipanayis, Constantinos G. ; Brat, Daniel J.</creator><creatorcontrib>Ross, James L. ; Cooper, Lee A. D. ; Kong, Jun ; Gutman, David ; Williams, Merete ; Tucker-Burden, Carol ; McCrary, Myles R. ; Bouras, Alexandros ; Kaluzova, Milota ; Dunn, William D. ; Duong, Duc ; Hadjipanayis, Constantinos G. ; Brat, Daniel J.</creatorcontrib><description>Glioblastoma (GBM) contains diverse microenvironments with uneven distributions of oncogenic alterations and signaling networks. The diffusely infiltrative properties of GBM result in residual tumor at neurosurgical resection margins, representing the source of relapse in nearly all cases and suggesting that therapeutic efforts should be focused there. To identify signaling networks and potential druggable targets across tumor microenvironments (TMEs), we utilized 5-ALA fluorescence-guided neurosurgical resection and sampling, followed by proteomic analysis of specific TMEs. Reverse phase protein array (RPPA) was performed on 205 proteins isolated from the tumor margin, tumor bulk, and perinecrotic regions of 13 previously untreated, clinically-annotated and genetically-defined high grade gliomas. Differential protein and pathway signatures were established and then validated using western blotting, immunohistochemistry, and comparable TCGA RPPA datasets. We identified 37 proteins differentially expressed across high-grade glioma TMEs. We demonstrate that tumor margins were characterized by pro-survival and anti-apoptotic proteins, whereas perinecrotic regions were enriched for pro-coagulant and DNA damage response proteins. In both our patient cohort and TCGA cases, the data suggest that TMEs possess distinct protein expression profiles that are biologically and therapeutically relevant.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-15849-w</identifier><identifier>PMID: 29142297</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/105 ; 13/51 ; 38/1 ; 631/67/1922 ; 631/67/327 ; 82/79 ; 82/80 ; Aminolevulinic acid ; Apoptosis ; Brain cancer ; Brain tumors ; DNA damage ; Glioblastoma ; Glioma ; Humanities and Social Sciences ; Immunohistochemistry ; Microenvironments ; multidisciplinary ; Neurosurgery ; Protein arrays ; Proteins ; Sampling ; Science ; Science (multidisciplinary) ; Survival ; Tumors ; Western blotting</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.15593-11, Article 15593</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-71e9ecfba5d122812cf8aec1f770a510240ffb4402ad8c40f3891c6d2611796d3</citedby><cites>FETCH-LOGICAL-c540t-71e9ecfba5d122812cf8aec1f770a510240ffb4402ad8c40f3891c6d2611796d3</cites><orcidid>0000-0002-3504-4965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688093/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688093/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29142297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, James L.</creatorcontrib><creatorcontrib>Cooper, Lee A. D.</creatorcontrib><creatorcontrib>Kong, Jun</creatorcontrib><creatorcontrib>Gutman, David</creatorcontrib><creatorcontrib>Williams, Merete</creatorcontrib><creatorcontrib>Tucker-Burden, Carol</creatorcontrib><creatorcontrib>McCrary, Myles R.</creatorcontrib><creatorcontrib>Bouras, Alexandros</creatorcontrib><creatorcontrib>Kaluzova, Milota</creatorcontrib><creatorcontrib>Dunn, William D.</creatorcontrib><creatorcontrib>Duong, Duc</creatorcontrib><creatorcontrib>Hadjipanayis, Constantinos G.</creatorcontrib><creatorcontrib>Brat, Daniel J.</creatorcontrib><title>5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Glioblastoma (GBM) contains diverse microenvironments with uneven distributions of oncogenic alterations and signaling networks. The diffusely infiltrative properties of GBM result in residual tumor at neurosurgical resection margins, representing the source of relapse in nearly all cases and suggesting that therapeutic efforts should be focused there. To identify signaling networks and potential druggable targets across tumor microenvironments (TMEs), we utilized 5-ALA fluorescence-guided neurosurgical resection and sampling, followed by proteomic analysis of specific TMEs. Reverse phase protein array (RPPA) was performed on 205 proteins isolated from the tumor margin, tumor bulk, and perinecrotic regions of 13 previously untreated, clinically-annotated and genetically-defined high grade gliomas. Differential protein and pathway signatures were established and then validated using western blotting, immunohistochemistry, and comparable TCGA RPPA datasets. We identified 37 proteins differentially expressed across high-grade glioma TMEs. We demonstrate that tumor margins were characterized by pro-survival and anti-apoptotic proteins, whereas perinecrotic regions were enriched for pro-coagulant and DNA damage response proteins. In both our patient cohort and TCGA cases, the data suggest that TMEs possess distinct protein expression profiles that are biologically and therapeutically relevant.</description><subject>13/105</subject><subject>13/51</subject><subject>38/1</subject><subject>631/67/1922</subject><subject>631/67/327</subject><subject>82/79</subject><subject>82/80</subject><subject>Aminolevulinic acid</subject><subject>Apoptosis</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>DNA damage</subject><subject>Glioblastoma</subject><subject>Glioma</subject><subject>Humanities and Social Sciences</subject><subject>Immunohistochemistry</subject><subject>Microenvironments</subject><subject>multidisciplinary</subject><subject>Neurosurgery</subject><subject>Protein arrays</subject><subject>Proteins</subject><subject>Sampling</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Survival</subject><subject>Tumors</subject><subject>Western blotting</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFvFCEUxydGY5vaL-DBkHjxMgoMzMDFZNPUdZM2mqyeCcvA-BoGVpiZxqPfXNytzWoilwe83_vzeP-qeknwW4Ib8S4zwqWoMelqwgWT9f2T6pxixmvaUPr0ZH9WXeZ8h8viVDIin1dnVBJGqezOq5-8Xo0QorfL7CGAQSsDPVrP0NsebfW4L7cDig6tPcSd13mKo0a3YFK0YYEUw2jDlNGmLwEc2Iw-p1hv57TAoj3awhD0QUNPaBMc-CnpCRaLbnUaIOQX1TOnfbaXD_Gi-vrh-svVx_rm03pztbqpDWd4qjtipTVup3lPKBWEGie0NcR1HdacYMqwczvGMNW9MOXQCElM29OWkE62fXNRvT_q7ufdaHtT2k3aq32CUacfKmpQf2cCfFNDXBRvhcCyKQJvHgRS_D7bPKkRsrHe62DjnBWRLaesww0u6Ot_0Ls4pzKHA8U4F7QVhaJHqswy52TdYzMEq98mq6PJqpisDiar-1L06vQbjyV_LC1AcwRySYXBppO3_y_7Cwdmta8</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Ross, James L.</creator><creator>Cooper, Lee A. D.</creator><creator>Kong, Jun</creator><creator>Gutman, David</creator><creator>Williams, Merete</creator><creator>Tucker-Burden, Carol</creator><creator>McCrary, Myles R.</creator><creator>Bouras, Alexandros</creator><creator>Kaluzova, Milota</creator><creator>Dunn, William D.</creator><creator>Duong, Duc</creator><creator>Hadjipanayis, Constantinos G.</creator><creator>Brat, Daniel J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3504-4965</orcidid></search><sort><creationdate>20171115</creationdate><title>5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins</title><author>Ross, James L. ; Cooper, Lee A. D. ; Kong, Jun ; Gutman, David ; Williams, Merete ; Tucker-Burden, Carol ; McCrary, Myles R. ; Bouras, Alexandros ; Kaluzova, Milota ; Dunn, William D. ; Duong, Duc ; Hadjipanayis, Constantinos G. ; Brat, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-71e9ecfba5d122812cf8aec1f770a510240ffb4402ad8c40f3891c6d2611796d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/105</topic><topic>13/51</topic><topic>38/1</topic><topic>631/67/1922</topic><topic>631/67/327</topic><topic>82/79</topic><topic>82/80</topic><topic>Aminolevulinic acid</topic><topic>Apoptosis</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>DNA damage</topic><topic>Glioblastoma</topic><topic>Glioma</topic><topic>Humanities and Social Sciences</topic><topic>Immunohistochemistry</topic><topic>Microenvironments</topic><topic>multidisciplinary</topic><topic>Neurosurgery</topic><topic>Protein arrays</topic><topic>Proteins</topic><topic>Sampling</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Survival</topic><topic>Tumors</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, James L.</creatorcontrib><creatorcontrib>Cooper, Lee A. D.</creatorcontrib><creatorcontrib>Kong, Jun</creatorcontrib><creatorcontrib>Gutman, David</creatorcontrib><creatorcontrib>Williams, Merete</creatorcontrib><creatorcontrib>Tucker-Burden, Carol</creatorcontrib><creatorcontrib>McCrary, Myles R.</creatorcontrib><creatorcontrib>Bouras, Alexandros</creatorcontrib><creatorcontrib>Kaluzova, Milota</creatorcontrib><creatorcontrib>Dunn, William D.</creatorcontrib><creatorcontrib>Duong, Duc</creatorcontrib><creatorcontrib>Hadjipanayis, Constantinos G.</creatorcontrib><creatorcontrib>Brat, Daniel J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, James L.</au><au>Cooper, Lee A. D.</au><au>Kong, Jun</au><au>Gutman, David</au><au>Williams, Merete</au><au>Tucker-Burden, Carol</au><au>McCrary, Myles R.</au><au>Bouras, Alexandros</au><au>Kaluzova, Milota</au><au>Dunn, William D.</au><au>Duong, Duc</au><au>Hadjipanayis, Constantinos G.</au><au>Brat, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-15</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>15593</spage><epage>11</epage><pages>15593-11</pages><artnum>15593</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Glioblastoma (GBM) contains diverse microenvironments with uneven distributions of oncogenic alterations and signaling networks. The diffusely infiltrative properties of GBM result in residual tumor at neurosurgical resection margins, representing the source of relapse in nearly all cases and suggesting that therapeutic efforts should be focused there. To identify signaling networks and potential druggable targets across tumor microenvironments (TMEs), we utilized 5-ALA fluorescence-guided neurosurgical resection and sampling, followed by proteomic analysis of specific TMEs. Reverse phase protein array (RPPA) was performed on 205 proteins isolated from the tumor margin, tumor bulk, and perinecrotic regions of 13 previously untreated, clinically-annotated and genetically-defined high grade gliomas. Differential protein and pathway signatures were established and then validated using western blotting, immunohistochemistry, and comparable TCGA RPPA datasets. We identified 37 proteins differentially expressed across high-grade glioma TMEs. We demonstrate that tumor margins were characterized by pro-survival and anti-apoptotic proteins, whereas perinecrotic regions were enriched for pro-coagulant and DNA damage response proteins. In both our patient cohort and TCGA cases, the data suggest that TMEs possess distinct protein expression profiles that are biologically and therapeutically relevant.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29142297</pmid><doi>10.1038/s41598-017-15849-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3504-4965</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-11, Vol.7 (1), p.15593-11, Article 15593 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5688093 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 13/105 13/51 38/1 631/67/1922 631/67/327 82/79 82/80 Aminolevulinic acid Apoptosis Brain cancer Brain tumors DNA damage Glioblastoma Glioma Humanities and Social Sciences Immunohistochemistry Microenvironments multidisciplinary Neurosurgery Protein arrays Proteins Sampling Science Science (multidisciplinary) Survival Tumors Western blotting |
title | 5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5-Aminolevulinic%20Acid%20Guided%20Sampling%20of%20Glioblastoma%20Microenvironments%20Identifies%20Pro-Survival%20Signaling%20at%20Infiltrative%20Margins&rft.jtitle=Scientific%20reports&rft.au=Ross,%20James%20L.&rft.date=2017-11-15&rft.volume=7&rft.issue=1&rft.spage=15593&rft.epage=11&rft.pages=15593-11&rft.artnum=15593&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-15849-w&rft_dat=%3Cproquest_pubme%3E1965247030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964558268&rft_id=info:pmid/29142297&rfr_iscdi=true |