Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity

Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience reports 2017-12, Vol.37 (6)
Hauptverfasser: S. Yadav, Ghanshyam, K. Ravala, Sandeep, Kachhap, Sangita, Thakur, Meghna, Roy, Abhishek, Singh, Balvinder, Karthikeyan, Subramanian, K. Chakraborti, Pradip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Bioscience reports
container_volume 37
creator S. Yadav, Ghanshyam
K. Ravala, Sandeep
Kachhap, Sangita
Thakur, Meghna
Roy, Abhishek
Singh, Balvinder
Karthikeyan, Subramanian
K. Chakraborti, Pradip
description Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.
doi_str_mv 10.1042/BSR20171048
format Article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2038-11c20231e68cd112f8cd1b0dde6497c7158e478eef43efbea9c698112227d3323</originalsourceid><addsrcrecordid>eNpVkd1LwzAUxYMobk6f_AfyLtV8tU1fBB3zAwaCzueSprdrXNeWJB0U_3kzJkMfLufAufcHh4vQNSW3lAh29_jxzghNg5cnaErjlEci4_EpmhIqRCRFwifowrkvQkgIxDmaMJklnKdkir4Xw0bZsfNGR37sATuwpoU7X1vo2uDwxrTKAd5CaZSHEvd158LYsVHedC1WHq9qS5MM92D9YAuHt6PuCqV9QKkGrwfV7pePqJCYnfHjJTqrVOPg6ldn6PNpsZq_RMu359f5wzLSjHAZURqUcQqJ1CWlrNpLQcoSEpGlOqWxBJFKgEpwqApQmU4yGRYZS0vOGZ-h-wO3H4pQQ0PrrWry3pptqJ53yuT_k9bU-brb5XEiE57FAXBzAGjbOWehOt5Sku9_kP_5Af8Bpzl8Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>S. Yadav, Ghanshyam ; K. Ravala, Sandeep ; Kachhap, Sangita ; Thakur, Meghna ; Roy, Abhishek ; Singh, Balvinder ; Karthikeyan, Subramanian ; K. Chakraborti, Pradip</creator><creatorcontrib>S. Yadav, Ghanshyam ; K. Ravala, Sandeep ; Kachhap, Sangita ; Thakur, Meghna ; Roy, Abhishek ; Singh, Balvinder ; Karthikeyan, Subramanian ; K. Chakraborti, Pradip</creatorcontrib><description>Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.</description><identifier>ISSN: 0144-8463</identifier><identifier>EISSN: 1573-4935</identifier><identifier>DOI: 10.1042/BSR20171048</identifier><identifier>PMID: 28963370</identifier><language>eng</language><publisher>Portland Press Ltd</publisher><ispartof>Bioscience reports, 2017-12, Vol.37 (6)</ispartof><rights>2017 The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2038-11c20231e68cd112f8cd1b0dde6497c7158e478eef43efbea9c698112227d3323</citedby><cites>FETCH-LOGICAL-c2038-11c20231e68cd112f8cd1b0dde6497c7158e478eef43efbea9c698112227d3323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686395/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686395/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>S. Yadav, Ghanshyam</creatorcontrib><creatorcontrib>K. Ravala, Sandeep</creatorcontrib><creatorcontrib>Kachhap, Sangita</creatorcontrib><creatorcontrib>Thakur, Meghna</creatorcontrib><creatorcontrib>Roy, Abhishek</creatorcontrib><creatorcontrib>Singh, Balvinder</creatorcontrib><creatorcontrib>Karthikeyan, Subramanian</creatorcontrib><creatorcontrib>K. Chakraborti, Pradip</creatorcontrib><title>Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity</title><title>Bioscience reports</title><description>Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.</description><issn>0144-8463</issn><issn>1573-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkd1LwzAUxYMobk6f_AfyLtV8tU1fBB3zAwaCzueSprdrXNeWJB0U_3kzJkMfLufAufcHh4vQNSW3lAh29_jxzghNg5cnaErjlEci4_EpmhIqRCRFwifowrkvQkgIxDmaMJklnKdkir4Xw0bZsfNGR37sATuwpoU7X1vo2uDwxrTKAd5CaZSHEvd158LYsVHedC1WHq9qS5MM92D9YAuHt6PuCqV9QKkGrwfV7pePqJCYnfHjJTqrVOPg6ldn6PNpsZq_RMu359f5wzLSjHAZURqUcQqJ1CWlrNpLQcoSEpGlOqWxBJFKgEpwqApQmU4yGRYZS0vOGZ-h-wO3H4pQQ0PrrWry3pptqJ53yuT_k9bU-brb5XEiE57FAXBzAGjbOWehOt5Sku9_kP_5Af8Bpzl8Mw</recordid><startdate>20171222</startdate><enddate>20171222</enddate><creator>S. Yadav, Ghanshyam</creator><creator>K. Ravala, Sandeep</creator><creator>Kachhap, Sangita</creator><creator>Thakur, Meghna</creator><creator>Roy, Abhishek</creator><creator>Singh, Balvinder</creator><creator>Karthikeyan, Subramanian</creator><creator>K. Chakraborti, Pradip</creator><general>Portland Press Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20171222</creationdate><title>Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity</title><author>S. Yadav, Ghanshyam ; K. Ravala, Sandeep ; Kachhap, Sangita ; Thakur, Meghna ; Roy, Abhishek ; Singh, Balvinder ; Karthikeyan, Subramanian ; K. Chakraborti, Pradip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2038-11c20231e68cd112f8cd1b0dde6497c7158e478eef43efbea9c698112227d3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>S. Yadav, Ghanshyam</creatorcontrib><creatorcontrib>K. Ravala, Sandeep</creatorcontrib><creatorcontrib>Kachhap, Sangita</creatorcontrib><creatorcontrib>Thakur, Meghna</creatorcontrib><creatorcontrib>Roy, Abhishek</creatorcontrib><creatorcontrib>Singh, Balvinder</creatorcontrib><creatorcontrib>Karthikeyan, Subramanian</creatorcontrib><creatorcontrib>K. Chakraborti, Pradip</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioscience reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>S. Yadav, Ghanshyam</au><au>K. Ravala, Sandeep</au><au>Kachhap, Sangita</au><au>Thakur, Meghna</au><au>Roy, Abhishek</au><au>Singh, Balvinder</au><au>Karthikeyan, Subramanian</au><au>K. Chakraborti, Pradip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity</atitle><jtitle>Bioscience reports</jtitle><date>2017-12-22</date><risdate>2017</risdate><volume>37</volume><issue>6</issue><issn>0144-8463</issn><eissn>1573-4935</eissn><abstract>Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.</abstract><pub>Portland Press Ltd</pub><pmid>28963370</pmid><doi>10.1042/BSR20171048</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8463
ispartof Bioscience reports, 2017-12, Vol.37 (6)
issn 0144-8463
1573-4935
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686395
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr169 perturbs mycobacterial guanylate kinase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eukaryotic-type%20serine/threonine%20kinase%20mediated%20phosphorylation%20at%20Thr169%20perturbs%20mycobacterial%20guanylate%20kinase%20activity&rft.jtitle=Bioscience%20reports&rft.au=S.%20Yadav,%20Ghanshyam&rft.date=2017-12-22&rft.volume=37&rft.issue=6&rft.issn=0144-8463&rft.eissn=1573-4935&rft_id=info:doi/10.1042/BSR20171048&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5686395%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28963370&rfr_iscdi=true