A latent measure explains substantial variance in white matter microstructure across the newborn human brain

A latent measure of white matter microstructure ( g WM ) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2017-12, Vol.222 (9), p.4023-4033
Hauptverfasser: Telford, Emma J., Cox, Simon R., Fletcher-Watson, Sue, Anblagan, Devasuda, Sparrow, Sarah, Pataky, Rozalia, Quigley, Alan, Semple, Scott I., Bastin, Mark E., Boardman, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4033
container_issue 9
container_start_page 4023
container_title Brain Structure and Function
container_volume 222
creator Telford, Emma J.
Cox, Simon R.
Fletcher-Watson, Sue
Anblagan, Devasuda
Sparrow, Sarah
Pataky, Rozalia
Quigley, Alan
Semple, Scott I.
Bastin, Mark E.
Boardman, James P.
description A latent measure of white matter microstructure ( g WM ) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23 +2 –41 +5 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography. Principal component analyses (PCAs) were carried out on the correlations between the eight tracts, separately for four tract-averaged water diffusion parameters: fractional anisotropy, and mean, radial and axial diffusivities. For all four parameters, PCAs revealed a single latent variable that explained around half of the variance across all eight tracts, and all tracts showed positive loadings. We considered the impact of early environment on general microstructural properties, by comparing term-born infants with preterm infants at term equivalent age. We found significant associations between GA at birth and the latent measure for each water diffusion measure; this effect was most apparent in projection and commissural fibers. These data show that a latent measure of white matter microstructure is present in very early life, well before myelination is widespread. Early exposure to extra-uterine life is associated with altered general properties of white matter microstructure, which could explain the high prevalence of cognitive impairment experienced by children born preterm.
doi_str_mv 10.1007/s00429-017-1455-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963842238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-76fac4ddf4b5eea4caa3652dc3ea23c7cf0ec1e1eb57eff7b4b923d24c83ee823</originalsourceid><addsrcrecordid>eNp1kUtv1TAUhC0EoqXwA9ggS2zYBPyOs0GqKl5SJTawtk6ck15XiXOxnbb8exxuuSpIrGzrfDP2eAh5ydlbzlj7LjOmRNcw3jZcad2YR-SUWyMbYQx_fNxreUKe5XzNmO4s756SE2G17YS2p2Q6pxMUjIXOCHlNSPFuP0GImea1zwViCTDRG0gBokcaIr3dhYJ0hlIw0Tn4tOSSVl82MWynTMsOacTbfkmR7tYZIu1T9XxOnowwZXxxv56R7x8_fLv43Fx-_fTl4vyy8aplpWnNCF4Nw6h6jQjKA0ijxeAlgpC-9SNDz5Fjr1scx7ZXfSfkIJS3EtEKeUbeH3z3az_j4Gu8BJPbpzBD-ukWCO7vSQw7d7XcOG2sEVpVgzf3Bmn5sWIubg7Z4zRBxGXNjnesZcxYtaGv_0GvlzXFGq9SRlolhLSV4gfq9_8kHI-P4cxtXbpDl6526bYunamaVw9THBV_yquAOAC5juIVpgdX_9f1Fyjnrlo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963842238</pqid></control><display><type>article</type><title>A latent measure explains substantial variance in white matter microstructure across the newborn human brain</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Telford, Emma J. ; Cox, Simon R. ; Fletcher-Watson, Sue ; Anblagan, Devasuda ; Sparrow, Sarah ; Pataky, Rozalia ; Quigley, Alan ; Semple, Scott I. ; Bastin, Mark E. ; Boardman, James P.</creator><creatorcontrib>Telford, Emma J. ; Cox, Simon R. ; Fletcher-Watson, Sue ; Anblagan, Devasuda ; Sparrow, Sarah ; Pataky, Rozalia ; Quigley, Alan ; Semple, Scott I. ; Bastin, Mark E. ; Boardman, James P.</creatorcontrib><description>A latent measure of white matter microstructure ( g WM ) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23 +2 –41 +5 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography. Principal component analyses (PCAs) were carried out on the correlations between the eight tracts, separately for four tract-averaged water diffusion parameters: fractional anisotropy, and mean, radial and axial diffusivities. For all four parameters, PCAs revealed a single latent variable that explained around half of the variance across all eight tracts, and all tracts showed positive loadings. We considered the impact of early environment on general microstructural properties, by comparing term-born infants with preterm infants at term equivalent age. We found significant associations between GA at birth and the latent measure for each water diffusion measure; this effect was most apparent in projection and commissural fibers. These data show that a latent measure of white matter microstructure is present in very early life, well before myelination is widespread. Early exposure to extra-uterine life is associated with altered general properties of white matter microstructure, which could explain the high prevalence of cognitive impairment experienced by children born preterm.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-017-1455-6</identifier><identifier>PMID: 28589258</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Attention deficit hyperactivity disorder ; Biomedical and Life Sciences ; Biomedicine ; Birth ; Brain Mapping ; Cell Biology ; Children ; Cognition - physiology ; Cognitive ability ; Diffusion Tensor Imaging ; Female ; Follow-Up Studies ; Functional Laterality ; Gestational age ; Humans ; Image Processing, Computer-Assisted ; Infant, Newborn ; Infant, Premature - physiology ; Infants ; Information processing ; Intelligence ; Magnetic resonance imaging ; Male ; Myelination ; Neonates ; Neurology ; Neurosciences ; Newborn babies ; Original ; Original Article ; Principal Component Analysis ; Pyramidal Tracts - diagnostic imaging ; Pyramidal Tracts - growth &amp; development ; Substantia alba ; Uterus ; White Matter - anatomy &amp; histology ; White Matter - diagnostic imaging ; White Matter - growth &amp; development</subject><ispartof>Brain Structure and Function, 2017-12, Vol.222 (9), p.4023-4033</ispartof><rights>The Author(s) 2017</rights><rights>Brain Structure and Function is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-76fac4ddf4b5eea4caa3652dc3ea23c7cf0ec1e1eb57eff7b4b923d24c83ee823</citedby><cites>FETCH-LOGICAL-c470t-76fac4ddf4b5eea4caa3652dc3ea23c7cf0ec1e1eb57eff7b4b923d24c83ee823</cites><orcidid>0000-0003-3904-8960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-017-1455-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-017-1455-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28589258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Telford, Emma J.</creatorcontrib><creatorcontrib>Cox, Simon R.</creatorcontrib><creatorcontrib>Fletcher-Watson, Sue</creatorcontrib><creatorcontrib>Anblagan, Devasuda</creatorcontrib><creatorcontrib>Sparrow, Sarah</creatorcontrib><creatorcontrib>Pataky, Rozalia</creatorcontrib><creatorcontrib>Quigley, Alan</creatorcontrib><creatorcontrib>Semple, Scott I.</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><creatorcontrib>Boardman, James P.</creatorcontrib><title>A latent measure explains substantial variance in white matter microstructure across the newborn human brain</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>A latent measure of white matter microstructure ( g WM ) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23 +2 –41 +5 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography. Principal component analyses (PCAs) were carried out on the correlations between the eight tracts, separately for four tract-averaged water diffusion parameters: fractional anisotropy, and mean, radial and axial diffusivities. For all four parameters, PCAs revealed a single latent variable that explained around half of the variance across all eight tracts, and all tracts showed positive loadings. We considered the impact of early environment on general microstructural properties, by comparing term-born infants with preterm infants at term equivalent age. We found significant associations between GA at birth and the latent measure for each water diffusion measure; this effect was most apparent in projection and commissural fibers. These data show that a latent measure of white matter microstructure is present in very early life, well before myelination is widespread. Early exposure to extra-uterine life is associated with altered general properties of white matter microstructure, which could explain the high prevalence of cognitive impairment experienced by children born preterm.</description><subject>Anisotropy</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Birth</subject><subject>Brain Mapping</subject><subject>Cell Biology</subject><subject>Children</subject><subject>Cognition - physiology</subject><subject>Cognitive ability</subject><subject>Diffusion Tensor Imaging</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Functional Laterality</subject><subject>Gestational age</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Infant, Newborn</subject><subject>Infant, Premature - physiology</subject><subject>Infants</subject><subject>Information processing</subject><subject>Intelligence</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Myelination</subject><subject>Neonates</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Newborn babies</subject><subject>Original</subject><subject>Original Article</subject><subject>Principal Component Analysis</subject><subject>Pyramidal Tracts - diagnostic imaging</subject><subject>Pyramidal Tracts - growth &amp; development</subject><subject>Substantia alba</subject><subject>Uterus</subject><subject>White Matter - anatomy &amp; histology</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - growth &amp; development</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtv1TAUhC0EoqXwA9ggS2zYBPyOs0GqKl5SJTawtk6ck15XiXOxnbb8exxuuSpIrGzrfDP2eAh5ydlbzlj7LjOmRNcw3jZcad2YR-SUWyMbYQx_fNxreUKe5XzNmO4s756SE2G17YS2p2Q6pxMUjIXOCHlNSPFuP0GImea1zwViCTDRG0gBokcaIr3dhYJ0hlIw0Tn4tOSSVl82MWynTMsOacTbfkmR7tYZIu1T9XxOnowwZXxxv56R7x8_fLv43Fx-_fTl4vyy8aplpWnNCF4Nw6h6jQjKA0ijxeAlgpC-9SNDz5Fjr1scx7ZXfSfkIJS3EtEKeUbeH3z3az_j4Gu8BJPbpzBD-ukWCO7vSQw7d7XcOG2sEVpVgzf3Bmn5sWIubg7Z4zRBxGXNjnesZcxYtaGv_0GvlzXFGq9SRlolhLSV4gfq9_8kHI-P4cxtXbpDl6526bYunamaVw9THBV_yquAOAC5juIVpgdX_9f1Fyjnrlo</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Telford, Emma J.</creator><creator>Cox, Simon R.</creator><creator>Fletcher-Watson, Sue</creator><creator>Anblagan, Devasuda</creator><creator>Sparrow, Sarah</creator><creator>Pataky, Rozalia</creator><creator>Quigley, Alan</creator><creator>Semple, Scott I.</creator><creator>Bastin, Mark E.</creator><creator>Boardman, James P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3904-8960</orcidid></search><sort><creationdate>20171201</creationdate><title>A latent measure explains substantial variance in white matter microstructure across the newborn human brain</title><author>Telford, Emma J. ; Cox, Simon R. ; Fletcher-Watson, Sue ; Anblagan, Devasuda ; Sparrow, Sarah ; Pataky, Rozalia ; Quigley, Alan ; Semple, Scott I. ; Bastin, Mark E. ; Boardman, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-76fac4ddf4b5eea4caa3652dc3ea23c7cf0ec1e1eb57eff7b4b923d24c83ee823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Birth</topic><topic>Brain Mapping</topic><topic>Cell Biology</topic><topic>Children</topic><topic>Cognition - physiology</topic><topic>Cognitive ability</topic><topic>Diffusion Tensor Imaging</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Functional Laterality</topic><topic>Gestational age</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Infant, Newborn</topic><topic>Infant, Premature - physiology</topic><topic>Infants</topic><topic>Information processing</topic><topic>Intelligence</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Myelination</topic><topic>Neonates</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Newborn babies</topic><topic>Original</topic><topic>Original Article</topic><topic>Principal Component Analysis</topic><topic>Pyramidal Tracts - diagnostic imaging</topic><topic>Pyramidal Tracts - growth &amp; development</topic><topic>Substantia alba</topic><topic>Uterus</topic><topic>White Matter - anatomy &amp; histology</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telford, Emma J.</creatorcontrib><creatorcontrib>Cox, Simon R.</creatorcontrib><creatorcontrib>Fletcher-Watson, Sue</creatorcontrib><creatorcontrib>Anblagan, Devasuda</creatorcontrib><creatorcontrib>Sparrow, Sarah</creatorcontrib><creatorcontrib>Pataky, Rozalia</creatorcontrib><creatorcontrib>Quigley, Alan</creatorcontrib><creatorcontrib>Semple, Scott I.</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><creatorcontrib>Boardman, James P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telford, Emma J.</au><au>Cox, Simon R.</au><au>Fletcher-Watson, Sue</au><au>Anblagan, Devasuda</au><au>Sparrow, Sarah</au><au>Pataky, Rozalia</au><au>Quigley, Alan</au><au>Semple, Scott I.</au><au>Bastin, Mark E.</au><au>Boardman, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A latent measure explains substantial variance in white matter microstructure across the newborn human brain</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>222</volume><issue>9</issue><spage>4023</spage><epage>4033</epage><pages>4023-4033</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>A latent measure of white matter microstructure ( g WM ) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23 +2 –41 +5 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography. Principal component analyses (PCAs) were carried out on the correlations between the eight tracts, separately for four tract-averaged water diffusion parameters: fractional anisotropy, and mean, radial and axial diffusivities. For all four parameters, PCAs revealed a single latent variable that explained around half of the variance across all eight tracts, and all tracts showed positive loadings. We considered the impact of early environment on general microstructural properties, by comparing term-born infants with preterm infants at term equivalent age. We found significant associations between GA at birth and the latent measure for each water diffusion measure; this effect was most apparent in projection and commissural fibers. These data show that a latent measure of white matter microstructure is present in very early life, well before myelination is widespread. Early exposure to extra-uterine life is associated with altered general properties of white matter microstructure, which could explain the high prevalence of cognitive impairment experienced by children born preterm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28589258</pmid><doi>10.1007/s00429-017-1455-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3904-8960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2017-12, Vol.222 (9), p.4023-4033
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686254
source MEDLINE; SpringerNature Journals
subjects Anisotropy
Attention deficit hyperactivity disorder
Biomedical and Life Sciences
Biomedicine
Birth
Brain Mapping
Cell Biology
Children
Cognition - physiology
Cognitive ability
Diffusion Tensor Imaging
Female
Follow-Up Studies
Functional Laterality
Gestational age
Humans
Image Processing, Computer-Assisted
Infant, Newborn
Infant, Premature - physiology
Infants
Information processing
Intelligence
Magnetic resonance imaging
Male
Myelination
Neonates
Neurology
Neurosciences
Newborn babies
Original
Original Article
Principal Component Analysis
Pyramidal Tracts - diagnostic imaging
Pyramidal Tracts - growth & development
Substantia alba
Uterus
White Matter - anatomy & histology
White Matter - diagnostic imaging
White Matter - growth & development
title A latent measure explains substantial variance in white matter microstructure across the newborn human brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20latent%20measure%20explains%20substantial%20variance%20in%20white%20matter%20microstructure%20across%20the%20newborn%20human%20brain&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Telford,%20Emma%20J.&rft.date=2017-12-01&rft.volume=222&rft.issue=9&rft.spage=4023&rft.epage=4033&rft.pages=4023-4033&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-017-1455-6&rft_dat=%3Cproquest_pubme%3E1963842238%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963842238&rft_id=info:pmid/28589258&rfr_iscdi=true