3D-printed biomaterials with regional auxetic properties
Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2017-12, Vol.76, p.145-152 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | |
container_start_page | 145 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 76 |
creator | Warner, John J Gillies, Allison R Hwang, Henry H Zhang, Hong Lieber, Richard L Chen, Shaochen |
description | Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition. |
doi_str_mv | 10.1016/j.jmbbm.2017.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5680127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924599835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQtBCIlsIXIKEcuSSs7dhxL0ioPKVKXOBsOY7TOsoLO-Hx97i0VHDa0e7M7GgQOseQYMD8qkqqJs-bhADOEmBJ2B2gKRaZiAELOAw4YzjmmOMJOvG-AuAAQhyjCREZS0maTpGgt3HvbDuYIspt16jBOKtqH33YYR05s7Jdq-pIjZ9msDrqXdcbN1jjT9FRGXjmbDdn6PX-7mXxGC-fH54WN8tYp8CGuEhzhgvguDCQZ5QLLfJ0zgMulCgVIUYwyiklmDJVEk0057TUwhAOjJCcztD11rcf88YU2rSDU7UMmRvlvmSnrPx_ae1arrp3ybgATLJgcLkzcN3baPwgG-u1qWvVmm70Es9JyuZzQVmg0i1Vu857Z8r9Gwxy07ms5E_nctO5BCbDLqgu_ibca35Lpt9qCH91</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924599835</pqid></control><display><type>article</type><title>3D-printed biomaterials with regional auxetic properties</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Warner, John J ; Gillies, Allison R ; Hwang, Henry H ; Zhang, Hong ; Lieber, Richard L ; Chen, Shaochen</creator><creatorcontrib>Warner, John J ; Gillies, Allison R ; Hwang, Henry H ; Zhang, Hong ; Lieber, Richard L ; Chen, Shaochen</creatorcontrib><description>Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2017.05.016</identifier><identifier>PMID: 28754244</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Mechanical Phenomena ; Mice ; Models, Molecular ; Molecular Conformation ; Photochemical Processes ; Polymerization ; Polyurethanes - chemistry ; Printing, Three-Dimensional</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2017-12, Vol.76, p.145-152</ispartof><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</citedby><cites>FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28754244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warner, John J</creatorcontrib><creatorcontrib>Gillies, Allison R</creatorcontrib><creatorcontrib>Hwang, Henry H</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Chen, Shaochen</creatorcontrib><title>3D-printed biomaterials with regional auxetic properties</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Mechanical Phenomena</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Photochemical Processes</subject><subject>Polymerization</subject><subject>Polyurethanes - chemistry</subject><subject>Printing, Three-Dimensional</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUMtOwzAQtBCIlsIXIKEcuSSs7dhxL0ioPKVKXOBsOY7TOsoLO-Hx97i0VHDa0e7M7GgQOseQYMD8qkqqJs-bhADOEmBJ2B2gKRaZiAELOAw4YzjmmOMJOvG-AuAAQhyjCREZS0maTpGgt3HvbDuYIspt16jBOKtqH33YYR05s7Jdq-pIjZ9msDrqXdcbN1jjT9FRGXjmbDdn6PX-7mXxGC-fH54WN8tYp8CGuEhzhgvguDCQZ5QLLfJ0zgMulCgVIUYwyiklmDJVEk0057TUwhAOjJCcztD11rcf88YU2rSDU7UMmRvlvmSnrPx_ae1arrp3ybgATLJgcLkzcN3baPwgG-u1qWvVmm70Es9JyuZzQVmg0i1Vu857Z8r9Gwxy07ms5E_nctO5BCbDLqgu_ibca35Lpt9qCH91</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Warner, John J</creator><creator>Gillies, Allison R</creator><creator>Hwang, Henry H</creator><creator>Zhang, Hong</creator><creator>Lieber, Richard L</creator><creator>Chen, Shaochen</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171201</creationdate><title>3D-printed biomaterials with regional auxetic properties</title><author>Warner, John J ; Gillies, Allison R ; Hwang, Henry H ; Zhang, Hong ; Lieber, Richard L ; Chen, Shaochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Mechanical Phenomena</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Photochemical Processes</topic><topic>Polymerization</topic><topic>Polyurethanes - chemistry</topic><topic>Printing, Three-Dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warner, John J</creatorcontrib><creatorcontrib>Gillies, Allison R</creatorcontrib><creatorcontrib>Hwang, Henry H</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Chen, Shaochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warner, John J</au><au>Gillies, Allison R</au><au>Hwang, Henry H</au><au>Zhang, Hong</au><au>Lieber, Richard L</au><au>Chen, Shaochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed biomaterials with regional auxetic properties</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>76</volume><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.</abstract><cop>Netherlands</cop><pmid>28754244</pmid><doi>10.1016/j.jmbbm.2017.05.016</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2017-12, Vol.76, p.145-152 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5680127 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biocompatible Materials - chemistry Mechanical Phenomena Mice Models, Molecular Molecular Conformation Photochemical Processes Polymerization Polyurethanes - chemistry Printing, Three-Dimensional |
title | 3D-printed biomaterials with regional auxetic properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20biomaterials%20with%20regional%20auxetic%20properties&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Warner,%20John%20J&rft.date=2017-12-01&rft.volume=76&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2017.05.016&rft_dat=%3Cproquest_pubme%3E1924599835%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924599835&rft_id=info:pmid/28754244&rfr_iscdi=true |