3D-printed biomaterials with regional auxetic properties

Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2017-12, Vol.76, p.145-152
Hauptverfasser: Warner, John J, Gillies, Allison R, Hwang, Henry H, Zhang, Hong, Lieber, Richard L, Chen, Shaochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 145
container_title Journal of the mechanical behavior of biomedical materials
container_volume 76
creator Warner, John J
Gillies, Allison R
Hwang, Henry H
Zhang, Hong
Lieber, Richard L
Chen, Shaochen
description Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.
doi_str_mv 10.1016/j.jmbbm.2017.05.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5680127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924599835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQtBCIlsIXIKEcuSSs7dhxL0ioPKVKXOBsOY7TOsoLO-Hx97i0VHDa0e7M7GgQOseQYMD8qkqqJs-bhADOEmBJ2B2gKRaZiAELOAw4YzjmmOMJOvG-AuAAQhyjCREZS0maTpGgt3HvbDuYIspt16jBOKtqH33YYR05s7Jdq-pIjZ9msDrqXdcbN1jjT9FRGXjmbDdn6PX-7mXxGC-fH54WN8tYp8CGuEhzhgvguDCQZ5QLLfJ0zgMulCgVIUYwyiklmDJVEk0057TUwhAOjJCcztD11rcf88YU2rSDU7UMmRvlvmSnrPx_ae1arrp3ybgATLJgcLkzcN3baPwgG-u1qWvVmm70Es9JyuZzQVmg0i1Vu857Z8r9Gwxy07ms5E_nctO5BCbDLqgu_ibca35Lpt9qCH91</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924599835</pqid></control><display><type>article</type><title>3D-printed biomaterials with regional auxetic properties</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Warner, John J ; Gillies, Allison R ; Hwang, Henry H ; Zhang, Hong ; Lieber, Richard L ; Chen, Shaochen</creator><creatorcontrib>Warner, John J ; Gillies, Allison R ; Hwang, Henry H ; Zhang, Hong ; Lieber, Richard L ; Chen, Shaochen</creatorcontrib><description>Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2017.05.016</identifier><identifier>PMID: 28754244</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Mechanical Phenomena ; Mice ; Models, Molecular ; Molecular Conformation ; Photochemical Processes ; Polymerization ; Polyurethanes - chemistry ; Printing, Three-Dimensional</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2017-12, Vol.76, p.145-152</ispartof><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</citedby><cites>FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28754244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warner, John J</creatorcontrib><creatorcontrib>Gillies, Allison R</creatorcontrib><creatorcontrib>Hwang, Henry H</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Chen, Shaochen</creatorcontrib><title>3D-printed biomaterials with regional auxetic properties</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Mechanical Phenomena</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Photochemical Processes</subject><subject>Polymerization</subject><subject>Polyurethanes - chemistry</subject><subject>Printing, Three-Dimensional</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUMtOwzAQtBCIlsIXIKEcuSSs7dhxL0ioPKVKXOBsOY7TOsoLO-Hx97i0VHDa0e7M7GgQOseQYMD8qkqqJs-bhADOEmBJ2B2gKRaZiAELOAw4YzjmmOMJOvG-AuAAQhyjCREZS0maTpGgt3HvbDuYIspt16jBOKtqH33YYR05s7Jdq-pIjZ9msDrqXdcbN1jjT9FRGXjmbDdn6PX-7mXxGC-fH54WN8tYp8CGuEhzhgvguDCQZ5QLLfJ0zgMulCgVIUYwyiklmDJVEk0057TUwhAOjJCcztD11rcf88YU2rSDU7UMmRvlvmSnrPx_ae1arrp3ybgATLJgcLkzcN3baPwgG-u1qWvVmm70Es9JyuZzQVmg0i1Vu857Z8r9Gwxy07ms5E_nctO5BCbDLqgu_ibca35Lpt9qCH91</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Warner, John J</creator><creator>Gillies, Allison R</creator><creator>Hwang, Henry H</creator><creator>Zhang, Hong</creator><creator>Lieber, Richard L</creator><creator>Chen, Shaochen</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171201</creationdate><title>3D-printed biomaterials with regional auxetic properties</title><author>Warner, John J ; Gillies, Allison R ; Hwang, Henry H ; Zhang, Hong ; Lieber, Richard L ; Chen, Shaochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d4b51d061de0b7368c8b4960b7da8fa22e8536332135af2c2c663fc8e260522b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Mechanical Phenomena</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Photochemical Processes</topic><topic>Polymerization</topic><topic>Polyurethanes - chemistry</topic><topic>Printing, Three-Dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warner, John J</creatorcontrib><creatorcontrib>Gillies, Allison R</creatorcontrib><creatorcontrib>Hwang, Henry H</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Chen, Shaochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warner, John J</au><au>Gillies, Allison R</au><au>Hwang, Henry H</au><au>Zhang, Hong</au><au>Lieber, Richard L</au><au>Chen, Shaochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed biomaterials with regional auxetic properties</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>76</volume><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.</abstract><cop>Netherlands</cop><pmid>28754244</pmid><doi>10.1016/j.jmbbm.2017.05.016</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2017-12, Vol.76, p.145-152
issn 1751-6161
1878-0180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5680127
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biocompatible Materials - chemistry
Mechanical Phenomena
Mice
Models, Molecular
Molecular Conformation
Photochemical Processes
Polymerization
Polyurethanes - chemistry
Printing, Three-Dimensional
title 3D-printed biomaterials with regional auxetic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20biomaterials%20with%20regional%20auxetic%20properties&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Warner,%20John%20J&rft.date=2017-12-01&rft.volume=76&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2017.05.016&rft_dat=%3Cproquest_pubme%3E1924599835%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924599835&rft_id=info:pmid/28754244&rfr_iscdi=true