The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow

The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.14996-12, Article 14996
Hauptverfasser: Zhang, Yun-Peng, Huang, Yi-Tao, Huang, Tse-Shun, Pang, Wei, Zhu, Juan-Juan, Liu, Yue-Feng, Tang, Run-Ze, Zhao, Chuan-Rong, Yao, Wei-Juan, Li, Yi-Shuan, Chien, Shu, Zhou, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 14996
container_title Scientific reports
container_volume 7
creator Zhang, Yun-Peng
Huang, Yi-Tao
Huang, Tse-Shun
Pang, Wei
Zhu, Juan-Juan
Liu, Yue-Feng
Tang, Run-Ze
Zhao, Chuan-Rong
Yao, Wei-Juan
Li, Yi-Shuan
Chien, Shu
Zhou, Jing
description The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo . Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.
doi_str_mv 10.1038/s41598-017-15387-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5678172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962428804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f7b90cca91966c798f899924993995e523f9c5ccaa6b7af5d864445b4980b503</originalsourceid><addsrcrecordid>eNp1kVFvFCEUhSdGY5vaP-CDIfHFl1FgYAZeTJpq1aRqYvad3GFgl4aBFZjq_oX-alm3NquJvEByvns4N6dpnhP8muBOvMmMcClaTIaW8E4MLX_UnFLMeEs7Sh8fvU-a85xvcD2cSkbk0-aESkJER_lpc7faGPQZ5hm8g4BWkNamoGjRN9jCvNMuIAgTevflAs2mbHa-JAjZmgTZIILgp8tVmBwUk9EtZL14SMiEKZaNqZYeTbtsl6CLiwFVt2TyNoY6XCKaXC5LGs2ErI8_njVPLPhszu_vs2Z19X51-bG9_vrh0-XFdavZwEprh1FirUES2fd6kMIKKSVlUnZScsNpZ6XmFYB-HMDySfSMMT4yKfDIcXfWvD3YbpexJtcm1JW82iY3Q9qpCE79rQS3Uet4q3g_CDLQavDq3iDF74vJRc0ua-M9BBOXrGouyqgQmFX05T_oTVxSqNvtKSJIjcYrRQ-UTjHnZOxDGILVvmx1KFvVstXvstV-6MXxGg8jf6qtQHcAcpXC2qSjv_9v-wv9FrdS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961816445</pqid></control><display><type>article</type><title>The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yun-Peng ; Huang, Yi-Tao ; Huang, Tse-Shun ; Pang, Wei ; Zhu, Juan-Juan ; Liu, Yue-Feng ; Tang, Run-Ze ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Chien, Shu ; Zhou, Jing</creator><creatorcontrib>Zhang, Yun-Peng ; Huang, Yi-Tao ; Huang, Tse-Shun ; Pang, Wei ; Zhu, Juan-Juan ; Liu, Yue-Feng ; Tang, Run-Ze ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Chien, Shu ; Zhou, Jing</creatorcontrib><description>The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo . Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-15387-5</identifier><identifier>PMID: 29118325</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/107 ; 13/109 ; 13/95 ; 14/63 ; 38/77 ; 38/89 ; 631/443/592/75 ; 631/80/304 ; 692/420/256/2515 ; Animals ; Arteries - pathology ; Arteries - physiopathology ; Arteriosclerosis ; Atherosclerosis ; Atherosclerosis - genetics ; Atherosclerosis - pathology ; Atherosclerosis - physiopathology ; Blood flow ; Cattle ; Cell cycle ; Circulatory system ; Connective tissue growth factor ; Connective Tissue Growth Factor - genetics ; Connective Tissue Growth Factor - metabolism ; Cyclin A ; Cyclin A - genetics ; Cyclin A - metabolism ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; DNA (Cytosine-5-)-Methyltransferase 1 - metabolism ; DNA Methylation - physiology ; DNA methyltransferase ; DNMT1 protein ; Endothelium ; Endothelium, Vascular - pathology ; Epigenesis, Genetic - physiology ; Hemorheology - physiology ; Human Umbilical Vein Endothelial Cells ; Humanities and Social Sciences ; Humans ; Mammals ; Mice ; Mice, Inbred C57BL ; Mice, Knockout, ApoE ; multidisciplinary ; Promoter Regions, Genetic - genetics ; Rapamycin ; Science ; Science (multidisciplinary) ; TOR protein ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.14996-12, Article 14996</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f7b90cca91966c798f899924993995e523f9c5ccaa6b7af5d864445b4980b503</citedby><cites>FETCH-LOGICAL-c474t-f7b90cca91966c798f899924993995e523f9c5ccaa6b7af5d864445b4980b503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678172/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678172/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29118325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yun-Peng</creatorcontrib><creatorcontrib>Huang, Yi-Tao</creatorcontrib><creatorcontrib>Huang, Tse-Shun</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Zhu, Juan-Juan</creatorcontrib><creatorcontrib>Liu, Yue-Feng</creatorcontrib><creatorcontrib>Tang, Run-Ze</creatorcontrib><creatorcontrib>Zhao, Chuan-Rong</creatorcontrib><creatorcontrib>Yao, Wei-Juan</creatorcontrib><creatorcontrib>Li, Yi-Shuan</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><title>The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo . Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.</description><subject>13/106</subject><subject>13/107</subject><subject>13/109</subject><subject>13/95</subject><subject>14/63</subject><subject>38/77</subject><subject>38/89</subject><subject>631/443/592/75</subject><subject>631/80/304</subject><subject>692/420/256/2515</subject><subject>Animals</subject><subject>Arteries - pathology</subject><subject>Arteries - physiopathology</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - pathology</subject><subject>Atherosclerosis - physiopathology</subject><subject>Blood flow</subject><subject>Cattle</subject><subject>Cell cycle</subject><subject>Circulatory system</subject><subject>Connective tissue growth factor</subject><subject>Connective Tissue Growth Factor - genetics</subject><subject>Connective Tissue Growth Factor - metabolism</subject><subject>Cyclin A</subject><subject>Cyclin A - genetics</subject><subject>Cyclin A - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA (Cytosine-5-)-Methyltransferase 1 - metabolism</subject><subject>DNA Methylation - physiology</subject><subject>DNA methyltransferase</subject><subject>DNMT1 protein</subject><subject>Endothelium</subject><subject>Endothelium, Vascular - pathology</subject><subject>Epigenesis, Genetic - physiology</subject><subject>Hemorheology - physiology</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout, ApoE</subject><subject>multidisciplinary</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kVFvFCEUhSdGY5vaP-CDIfHFl1FgYAZeTJpq1aRqYvad3GFgl4aBFZjq_oX-alm3NquJvEByvns4N6dpnhP8muBOvMmMcClaTIaW8E4MLX_UnFLMeEs7Sh8fvU-a85xvcD2cSkbk0-aESkJER_lpc7faGPQZ5hm8g4BWkNamoGjRN9jCvNMuIAgTevflAs2mbHa-JAjZmgTZIILgp8tVmBwUk9EtZL14SMiEKZaNqZYeTbtsl6CLiwFVt2TyNoY6XCKaXC5LGs2ErI8_njVPLPhszu_vs2Z19X51-bG9_vrh0-XFdavZwEprh1FirUES2fd6kMIKKSVlUnZScsNpZ6XmFYB-HMDySfSMMT4yKfDIcXfWvD3YbpexJtcm1JW82iY3Q9qpCE79rQS3Uet4q3g_CDLQavDq3iDF74vJRc0ua-M9BBOXrGouyqgQmFX05T_oTVxSqNvtKSJIjcYrRQ-UTjHnZOxDGILVvmx1KFvVstXvstV-6MXxGg8jf6qtQHcAcpXC2qSjv_9v-wv9FrdS</recordid><startdate>20171108</startdate><enddate>20171108</enddate><creator>Zhang, Yun-Peng</creator><creator>Huang, Yi-Tao</creator><creator>Huang, Tse-Shun</creator><creator>Pang, Wei</creator><creator>Zhu, Juan-Juan</creator><creator>Liu, Yue-Feng</creator><creator>Tang, Run-Ze</creator><creator>Zhao, Chuan-Rong</creator><creator>Yao, Wei-Juan</creator><creator>Li, Yi-Shuan</creator><creator>Chien, Shu</creator><creator>Zhou, Jing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171108</creationdate><title>The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow</title><author>Zhang, Yun-Peng ; Huang, Yi-Tao ; Huang, Tse-Shun ; Pang, Wei ; Zhu, Juan-Juan ; Liu, Yue-Feng ; Tang, Run-Ze ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Chien, Shu ; Zhou, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f7b90cca91966c798f899924993995e523f9c5ccaa6b7af5d864445b4980b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/106</topic><topic>13/107</topic><topic>13/109</topic><topic>13/95</topic><topic>14/63</topic><topic>38/77</topic><topic>38/89</topic><topic>631/443/592/75</topic><topic>631/80/304</topic><topic>692/420/256/2515</topic><topic>Animals</topic><topic>Arteries - pathology</topic><topic>Arteries - physiopathology</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - pathology</topic><topic>Atherosclerosis - physiopathology</topic><topic>Blood flow</topic><topic>Cattle</topic><topic>Cell cycle</topic><topic>Circulatory system</topic><topic>Connective tissue growth factor</topic><topic>Connective Tissue Growth Factor - genetics</topic><topic>Connective Tissue Growth Factor - metabolism</topic><topic>Cyclin A</topic><topic>Cyclin A - genetics</topic><topic>Cyclin A - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA (Cytosine-5-)-Methyltransferase 1 - metabolism</topic><topic>DNA Methylation - physiology</topic><topic>DNA methyltransferase</topic><topic>DNMT1 protein</topic><topic>Endothelium</topic><topic>Endothelium, Vascular - pathology</topic><topic>Epigenesis, Genetic - physiology</topic><topic>Hemorheology - physiology</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout, ApoE</topic><topic>multidisciplinary</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yun-Peng</creatorcontrib><creatorcontrib>Huang, Yi-Tao</creatorcontrib><creatorcontrib>Huang, Tse-Shun</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Zhu, Juan-Juan</creatorcontrib><creatorcontrib>Liu, Yue-Feng</creatorcontrib><creatorcontrib>Tang, Run-Ze</creatorcontrib><creatorcontrib>Zhao, Chuan-Rong</creatorcontrib><creatorcontrib>Yao, Wei-Juan</creatorcontrib><creatorcontrib>Li, Yi-Shuan</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yun-Peng</au><au>Huang, Yi-Tao</au><au>Huang, Tse-Shun</au><au>Pang, Wei</au><au>Zhu, Juan-Juan</au><au>Liu, Yue-Feng</au><au>Tang, Run-Ze</au><au>Zhao, Chuan-Rong</au><au>Yao, Wei-Juan</au><au>Li, Yi-Shuan</au><au>Chien, Shu</au><au>Zhou, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-08</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14996</spage><epage>12</epage><pages>14996-12</pages><artnum>14996</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo . Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29118325</pmid><doi>10.1038/s41598-017-15387-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.14996-12, Article 14996
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5678172
source MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 13/106
13/107
13/109
13/95
14/63
38/77
38/89
631/443/592/75
631/80/304
692/420/256/2515
Animals
Arteries - pathology
Arteries - physiopathology
Arteriosclerosis
Atherosclerosis
Atherosclerosis - genetics
Atherosclerosis - pathology
Atherosclerosis - physiopathology
Blood flow
Cattle
Cell cycle
Circulatory system
Connective tissue growth factor
Connective Tissue Growth Factor - genetics
Connective Tissue Growth Factor - metabolism
Cyclin A
Cyclin A - genetics
Cyclin A - metabolism
Deoxyribonucleic acid
Disease Models, Animal
DNA
DNA (Cytosine-5-)-Methyltransferase 1 - metabolism
DNA Methylation - physiology
DNA methyltransferase
DNMT1 protein
Endothelium
Endothelium, Vascular - pathology
Epigenesis, Genetic - physiology
Hemorheology - physiology
Human Umbilical Vein Endothelial Cells
Humanities and Social Sciences
Humans
Mammals
Mice
Mice, Inbred C57BL
Mice, Knockout, ApoE
multidisciplinary
Promoter Regions, Genetic - genetics
Rapamycin
Science
Science (multidisciplinary)
TOR protein
TOR Serine-Threonine Kinases - metabolism
title The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mammalian%20Target%20of%20Rapamycin%20and%20DNA%20methyltransferase%201%20axis%20mediates%20vascular%20endothelial%20dysfunction%20in%20response%20to%20disturbed%20flow&rft.jtitle=Scientific%20reports&rft.au=Zhang,%20Yun-Peng&rft.date=2017-11-08&rft.volume=7&rft.issue=1&rft.spage=14996&rft.epage=12&rft.pages=14996-12&rft.artnum=14996&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-15387-5&rft_dat=%3Cproquest_pubme%3E1962428804%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961816445&rft_id=info:pmid/29118325&rfr_iscdi=true