A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers
Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator depend...
Gespeichert in:
Veröffentlicht in: | Biometrics 2018-03, Vol.74 (1), p.249-259 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | Biometrics |
container_volume | 74 |
creator | Tayob, Nabihah Stingo, Francesco Do, Kim-Anh Lok, Anna S. F. Feng, Ziding |
description | Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation. |
doi_str_mv | 10.1111/biom.12717 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5677596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45093169</jstor_id><sourcerecordid>45093169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</originalsourceid><addsrcrecordid>eNp9kc9v0zAYhi0EYt3gwh0UicuElOEfcexckNoK2KROO8AkbtYXx-lcXDuzE1D_e1y6VcABXyzLjx-9n1-EXhF8QfJ639qwvSBUEPEEzQivSIkrip-iGca4LllFvp2g05Q2-dhwTJ-jEyorSQmhMwTzYgE7kyz44ouOxnjr18V8GGIAfVf0IRaXZoAxaOPc5CAWS4ja-rCF4jbt2evJjXZwplgFv7bj1FkPrljkTBC_m5heoGc9uGRePuxn6PbTx6_Ly3J18_lqOV-VmrNalKztesqZBGwMb3thCJc91lSITnPRQtM2TAoJnPYUeiolwV3VVCB409UtVOwMfTh4h6ndmk4bP0Zwaog2B9mpAFb9fePtnVqHH4rXIkvqLDh_EMRwP5k0qq1N-7HBmzAlRWRTy4YwLDP69h90E6aY506KYsIEY_mfM_XuQOkYUoqmP4YhWO2bU_vm1O_mMvzmz_hH9LGqDJAD8NM6s_uPSi2ubq4fpa8PbzZpDPH4puK4YaRu2C8Cpa6W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013733502</pqid></control><display><type>article</type><title>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</title><source>MEDLINE</source><source>JSTOR Mathematics and Statistics</source><source>Wiley Online Library All Journals</source><source>JSTOR</source><source>Oxford Journals</source><creator>Tayob, Nabihah ; Stingo, Francesco ; Do, Kim-Anh ; Lok, Anna S. F. ; Feng, Ziding</creator><creatorcontrib>Tayob, Nabihah ; Stingo, Francesco ; Do, Kim-Anh ; Lok, Anna S. F. ; Feng, Ziding</creatorcontrib><description>Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12717</identifier><identifier>PMID: 28482112</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biomarkers ; Biomarkers, Tumor - analysis ; BIOMETRIC METHODOLOGY ; Carcinoma, Hepatocellular - diagnosis ; Change detection ; Changepoint models ; Cirrhosis ; Clinical Trials as Topic ; Computer simulation ; Diagnostic systems ; Early detection ; Hepatitis C ; Hepatitis C, Chronic - complications ; Hepatitis C, Chronic - drug therapy ; Hepatitis C, Chronic - pathology ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - etiology ; Liver Neoplasms - diagnosis ; Longitudinal Studies ; Markov analysis ; Markov chain monte carlo ; Markov chains ; Markov random field ; Mass Screening - statistics & numerical data ; Mixture models ; Monte Carlo simulation ; Patients ; Prothrombin ; Screening ; Survival ; Trajectories ; Ultrasound</subject><ispartof>Biometrics, 2018-03, Vol.74 (1), p.249-259</ispartof><rights>Copyright © 2018 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><rights>2018, The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</citedby><cites>FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</cites><orcidid>0000-0001-6088-167X ; 0000-0001-9150-8552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45093169$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45093169$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28482112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayob, Nabihah</creatorcontrib><creatorcontrib>Stingo, Francesco</creatorcontrib><creatorcontrib>Do, Kim-Anh</creatorcontrib><creatorcontrib>Lok, Anna S. F.</creatorcontrib><creatorcontrib>Feng, Ziding</creatorcontrib><title>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - analysis</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Change detection</subject><subject>Changepoint models</subject><subject>Cirrhosis</subject><subject>Clinical Trials as Topic</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Early detection</subject><subject>Hepatitis C</subject><subject>Hepatitis C, Chronic - complications</subject><subject>Hepatitis C, Chronic - drug therapy</subject><subject>Hepatitis C, Chronic - pathology</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - etiology</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Longitudinal Studies</subject><subject>Markov analysis</subject><subject>Markov chain monte carlo</subject><subject>Markov chains</subject><subject>Markov random field</subject><subject>Mass Screening - statistics & numerical data</subject><subject>Mixture models</subject><subject>Monte Carlo simulation</subject><subject>Patients</subject><subject>Prothrombin</subject><subject>Screening</subject><subject>Survival</subject><subject>Trajectories</subject><subject>Ultrasound</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9v0zAYhi0EYt3gwh0UicuElOEfcexckNoK2KROO8AkbtYXx-lcXDuzE1D_e1y6VcABXyzLjx-9n1-EXhF8QfJ639qwvSBUEPEEzQivSIkrip-iGca4LllFvp2g05Q2-dhwTJ-jEyorSQmhMwTzYgE7kyz44ouOxnjr18V8GGIAfVf0IRaXZoAxaOPc5CAWS4ja-rCF4jbt2evJjXZwplgFv7bj1FkPrljkTBC_m5heoGc9uGRePuxn6PbTx6_Ly3J18_lqOV-VmrNalKztesqZBGwMb3thCJc91lSITnPRQtM2TAoJnPYUeiolwV3VVCB409UtVOwMfTh4h6ndmk4bP0Zwaog2B9mpAFb9fePtnVqHH4rXIkvqLDh_EMRwP5k0qq1N-7HBmzAlRWRTy4YwLDP69h90E6aY506KYsIEY_mfM_XuQOkYUoqmP4YhWO2bU_vm1O_mMvzmz_hH9LGqDJAD8NM6s_uPSi2ubq4fpa8PbzZpDPH4puK4YaRu2C8Cpa6W</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Tayob, Nabihah</creator><creator>Stingo, Francesco</creator><creator>Do, Kim-Anh</creator><creator>Lok, Anna S. F.</creator><creator>Feng, Ziding</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6088-167X</orcidid><orcidid>https://orcid.org/0000-0001-9150-8552</orcidid></search><sort><creationdate>201803</creationdate><title>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</title><author>Tayob, Nabihah ; Stingo, Francesco ; Do, Kim-Anh ; Lok, Anna S. F. ; Feng, Ziding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - analysis</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Change detection</topic><topic>Changepoint models</topic><topic>Cirrhosis</topic><topic>Clinical Trials as Topic</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Early detection</topic><topic>Hepatitis C</topic><topic>Hepatitis C, Chronic - complications</topic><topic>Hepatitis C, Chronic - drug therapy</topic><topic>Hepatitis C, Chronic - pathology</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - etiology</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Longitudinal Studies</topic><topic>Markov analysis</topic><topic>Markov chain monte carlo</topic><topic>Markov chains</topic><topic>Markov random field</topic><topic>Mass Screening - statistics & numerical data</topic><topic>Mixture models</topic><topic>Monte Carlo simulation</topic><topic>Patients</topic><topic>Prothrombin</topic><topic>Screening</topic><topic>Survival</topic><topic>Trajectories</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayob, Nabihah</creatorcontrib><creatorcontrib>Stingo, Francesco</creatorcontrib><creatorcontrib>Do, Kim-Anh</creatorcontrib><creatorcontrib>Lok, Anna S. F.</creatorcontrib><creatorcontrib>Feng, Ziding</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayob, Nabihah</au><au>Stingo, Francesco</au><au>Do, Kim-Anh</au><au>Lok, Anna S. F.</au><au>Feng, Ziding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2018-03</date><risdate>2018</risdate><volume>74</volume><issue>1</issue><spage>249</spage><epage>259</epage><pages>249-259</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28482112</pmid><doi>10.1111/biom.12717</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6088-167X</orcidid><orcidid>https://orcid.org/0000-0001-9150-8552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2018-03, Vol.74 (1), p.249-259 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5677596 |
source | MEDLINE; JSTOR Mathematics and Statistics; Wiley Online Library All Journals; JSTOR; Oxford Journals |
subjects | Bayes Theorem Bayesian analysis Biomarkers Biomarkers, Tumor - analysis BIOMETRIC METHODOLOGY Carcinoma, Hepatocellular - diagnosis Change detection Changepoint models Cirrhosis Clinical Trials as Topic Computer simulation Diagnostic systems Early detection Hepatitis C Hepatitis C, Chronic - complications Hepatitis C, Chronic - drug therapy Hepatitis C, Chronic - pathology Hepatocellular carcinoma Humans Liver cancer Liver cirrhosis Liver Cirrhosis - etiology Liver Neoplasms - diagnosis Longitudinal Studies Markov analysis Markov chain monte carlo Markov chains Markov random field Mass Screening - statistics & numerical data Mixture models Monte Carlo simulation Patients Prothrombin Screening Survival Trajectories Ultrasound |
title | A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Screening%20Approach%20for%20Hepatocellular%20Carcinoma%20Using%20Multiple%20Longitudinal%20Biomarkers&rft.jtitle=Biometrics&rft.au=Tayob,%20Nabihah&rft.date=2018-03&rft.volume=74&rft.issue=1&rft.spage=249&rft.epage=259&rft.pages=249-259&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12717&rft_dat=%3Cjstor_pubme%3E45093169%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013733502&rft_id=info:pmid/28482112&rft_jstor_id=45093169&rfr_iscdi=true |