A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers

Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2018-03, Vol.74 (1), p.249-259
Hauptverfasser: Tayob, Nabihah, Stingo, Francesco, Do, Kim-Anh, Lok, Anna S. F., Feng, Ziding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 1
container_start_page 249
container_title Biometrics
container_volume 74
creator Tayob, Nabihah
Stingo, Francesco
Do, Kim-Anh
Lok, Anna S. F.
Feng, Ziding
description Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.
doi_str_mv 10.1111/biom.12717
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5677596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45093169</jstor_id><sourcerecordid>45093169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</originalsourceid><addsrcrecordid>eNp9kc9v0zAYhi0EYt3gwh0UicuElOEfcexckNoK2KROO8AkbtYXx-lcXDuzE1D_e1y6VcABXyzLjx-9n1-EXhF8QfJ639qwvSBUEPEEzQivSIkrip-iGca4LllFvp2g05Q2-dhwTJ-jEyorSQmhMwTzYgE7kyz44ouOxnjr18V8GGIAfVf0IRaXZoAxaOPc5CAWS4ja-rCF4jbt2evJjXZwplgFv7bj1FkPrljkTBC_m5heoGc9uGRePuxn6PbTx6_Ly3J18_lqOV-VmrNalKztesqZBGwMb3thCJc91lSITnPRQtM2TAoJnPYUeiolwV3VVCB409UtVOwMfTh4h6ndmk4bP0Zwaog2B9mpAFb9fePtnVqHH4rXIkvqLDh_EMRwP5k0qq1N-7HBmzAlRWRTy4YwLDP69h90E6aY506KYsIEY_mfM_XuQOkYUoqmP4YhWO2bU_vm1O_mMvzmz_hH9LGqDJAD8NM6s_uPSi2ubq4fpa8PbzZpDPH4puK4YaRu2C8Cpa6W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013733502</pqid></control><display><type>article</type><title>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</title><source>MEDLINE</source><source>JSTOR Mathematics and Statistics</source><source>Wiley Online Library All Journals</source><source>JSTOR</source><source>Oxford Journals</source><creator>Tayob, Nabihah ; Stingo, Francesco ; Do, Kim-Anh ; Lok, Anna S. F. ; Feng, Ziding</creator><creatorcontrib>Tayob, Nabihah ; Stingo, Francesco ; Do, Kim-Anh ; Lok, Anna S. F. ; Feng, Ziding</creatorcontrib><description>Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12717</identifier><identifier>PMID: 28482112</identifier><language>eng</language><publisher>United States: Wiley-Blackwell</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biomarkers ; Biomarkers, Tumor - analysis ; BIOMETRIC METHODOLOGY ; Carcinoma, Hepatocellular - diagnosis ; Change detection ; Changepoint models ; Cirrhosis ; Clinical Trials as Topic ; Computer simulation ; Diagnostic systems ; Early detection ; Hepatitis C ; Hepatitis C, Chronic - complications ; Hepatitis C, Chronic - drug therapy ; Hepatitis C, Chronic - pathology ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - etiology ; Liver Neoplasms - diagnosis ; Longitudinal Studies ; Markov analysis ; Markov chain monte carlo ; Markov chains ; Markov random field ; Mass Screening - statistics &amp; numerical data ; Mixture models ; Monte Carlo simulation ; Patients ; Prothrombin ; Screening ; Survival ; Trajectories ; Ultrasound</subject><ispartof>Biometrics, 2018-03, Vol.74 (1), p.249-259</ispartof><rights>Copyright © 2018 International Biometric Society</rights><rights>2017, The International Biometric Society</rights><rights>2017, The International Biometric Society.</rights><rights>2018, The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</citedby><cites>FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</cites><orcidid>0000-0001-6088-167X ; 0000-0001-9150-8552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45093169$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45093169$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28482112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayob, Nabihah</creatorcontrib><creatorcontrib>Stingo, Francesco</creatorcontrib><creatorcontrib>Do, Kim-Anh</creatorcontrib><creatorcontrib>Lok, Anna S. F.</creatorcontrib><creatorcontrib>Feng, Ziding</creatorcontrib><title>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - analysis</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Change detection</subject><subject>Changepoint models</subject><subject>Cirrhosis</subject><subject>Clinical Trials as Topic</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Early detection</subject><subject>Hepatitis C</subject><subject>Hepatitis C, Chronic - complications</subject><subject>Hepatitis C, Chronic - drug therapy</subject><subject>Hepatitis C, Chronic - pathology</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - etiology</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Longitudinal Studies</subject><subject>Markov analysis</subject><subject>Markov chain monte carlo</subject><subject>Markov chains</subject><subject>Markov random field</subject><subject>Mass Screening - statistics &amp; numerical data</subject><subject>Mixture models</subject><subject>Monte Carlo simulation</subject><subject>Patients</subject><subject>Prothrombin</subject><subject>Screening</subject><subject>Survival</subject><subject>Trajectories</subject><subject>Ultrasound</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9v0zAYhi0EYt3gwh0UicuElOEfcexckNoK2KROO8AkbtYXx-lcXDuzE1D_e1y6VcABXyzLjx-9n1-EXhF8QfJ639qwvSBUEPEEzQivSIkrip-iGca4LllFvp2g05Q2-dhwTJ-jEyorSQmhMwTzYgE7kyz44ouOxnjr18V8GGIAfVf0IRaXZoAxaOPc5CAWS4ja-rCF4jbt2evJjXZwplgFv7bj1FkPrljkTBC_m5heoGc9uGRePuxn6PbTx6_Ly3J18_lqOV-VmrNalKztesqZBGwMb3thCJc91lSITnPRQtM2TAoJnPYUeiolwV3VVCB409UtVOwMfTh4h6ndmk4bP0Zwaog2B9mpAFb9fePtnVqHH4rXIkvqLDh_EMRwP5k0qq1N-7HBmzAlRWRTy4YwLDP69h90E6aY506KYsIEY_mfM_XuQOkYUoqmP4YhWO2bU_vm1O_mMvzmz_hH9LGqDJAD8NM6s_uPSi2ubq4fpa8PbzZpDPH4puK4YaRu2C8Cpa6W</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Tayob, Nabihah</creator><creator>Stingo, Francesco</creator><creator>Do, Kim-Anh</creator><creator>Lok, Anna S. F.</creator><creator>Feng, Ziding</creator><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6088-167X</orcidid><orcidid>https://orcid.org/0000-0001-9150-8552</orcidid></search><sort><creationdate>201803</creationdate><title>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</title><author>Tayob, Nabihah ; Stingo, Francesco ; Do, Kim-Anh ; Lok, Anna S. F. ; Feng, Ziding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5367-3bdf2538a0ee5bf7e158f0c277dc57ba9b93878a52f2af28810d494a759d6ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - analysis</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Change detection</topic><topic>Changepoint models</topic><topic>Cirrhosis</topic><topic>Clinical Trials as Topic</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Early detection</topic><topic>Hepatitis C</topic><topic>Hepatitis C, Chronic - complications</topic><topic>Hepatitis C, Chronic - drug therapy</topic><topic>Hepatitis C, Chronic - pathology</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - etiology</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Longitudinal Studies</topic><topic>Markov analysis</topic><topic>Markov chain monte carlo</topic><topic>Markov chains</topic><topic>Markov random field</topic><topic>Mass Screening - statistics &amp; numerical data</topic><topic>Mixture models</topic><topic>Monte Carlo simulation</topic><topic>Patients</topic><topic>Prothrombin</topic><topic>Screening</topic><topic>Survival</topic><topic>Trajectories</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayob, Nabihah</creatorcontrib><creatorcontrib>Stingo, Francesco</creatorcontrib><creatorcontrib>Do, Kim-Anh</creatorcontrib><creatorcontrib>Lok, Anna S. F.</creatorcontrib><creatorcontrib>Feng, Ziding</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayob, Nabihah</au><au>Stingo, Francesco</au><au>Do, Kim-Anh</au><au>Lok, Anna S. F.</au><au>Feng, Ziding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2018-03</date><risdate>2018</risdate><volume>74</volume><issue>1</issue><spage>249</spage><epage>259</epage><pages>249-259</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Advanced hepatocellular carcinoma (HCC) has limited treatment options and poor survival, therefore early detection is critical to improving the survival of patients with HCC. Current guidelines for high-risk patients include ultrasound screenings every six months, but ultrasounds are operator dependent and not sensitive for early HCC. Serum α-Fetoprotein (AFP) is a widely used diagnostic biomarker, but it has limited sensitivity and is not elevated in all HCC cases so, we incorporate a second blood-based biomarker, des-γ carboxy-prothrombin (DCP), that has shown potential as a screening marker for HCC. The data from the Hepatitis Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial is a valuable source of data to study biomarker screening for HCC. We assume the trajectories of AFP and DCP follow a joint hierarchical mixture model with random changepoints that allows for distinct changepoint times and subsequent trajectories of each biomarker. The changepoint indicators are jointly modeled with a Markov Random Field distribution to help detect borderline changepoints. Markov chain Monte Carlo methods are used to calculate posterior distributions, which are used in risk calculations among future patients and determine whether a patient has a positive screen. The screening algorithm was compared to alternatives in simulations studies under a range of possible scenarios and in the HALT-C Trial using cross-validation.</abstract><cop>United States</cop><pub>Wiley-Blackwell</pub><pmid>28482112</pmid><doi>10.1111/biom.12717</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6088-167X</orcidid><orcidid>https://orcid.org/0000-0001-9150-8552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2018-03, Vol.74 (1), p.249-259
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5677596
source MEDLINE; JSTOR Mathematics and Statistics; Wiley Online Library All Journals; JSTOR; Oxford Journals
subjects Bayes Theorem
Bayesian analysis
Biomarkers
Biomarkers, Tumor - analysis
BIOMETRIC METHODOLOGY
Carcinoma, Hepatocellular - diagnosis
Change detection
Changepoint models
Cirrhosis
Clinical Trials as Topic
Computer simulation
Diagnostic systems
Early detection
Hepatitis C
Hepatitis C, Chronic - complications
Hepatitis C, Chronic - drug therapy
Hepatitis C, Chronic - pathology
Hepatocellular carcinoma
Humans
Liver cancer
Liver cirrhosis
Liver Cirrhosis - etiology
Liver Neoplasms - diagnosis
Longitudinal Studies
Markov analysis
Markov chain monte carlo
Markov chains
Markov random field
Mass Screening - statistics & numerical data
Mixture models
Monte Carlo simulation
Patients
Prothrombin
Screening
Survival
Trajectories
Ultrasound
title A Bayesian Screening Approach for Hepatocellular Carcinoma Using Multiple Longitudinal Biomarkers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Screening%20Approach%20for%20Hepatocellular%20Carcinoma%20Using%20Multiple%20Longitudinal%20Biomarkers&rft.jtitle=Biometrics&rft.au=Tayob,%20Nabihah&rft.date=2018-03&rft.volume=74&rft.issue=1&rft.spage=249&rft.epage=259&rft.pages=249-259&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12717&rft_dat=%3Cjstor_pubme%3E45093169%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013733502&rft_id=info:pmid/28482112&rft_jstor_id=45093169&rfr_iscdi=true