Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance

Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-10, Vol.114 (44), p.E9253-E9260
Hauptverfasser: Sharma, Ajay, Gaidamakova, Elena K., Grichenko, Olga, Matrosova, Vera Y., Hoeke, Veronika, Klimenkova, Polina, Conze, Isabel H., Volpe, Robert P., Tkavc, Rok, Gostinčar, Cene, Gunde-Cimerman, Nina, DiRuggiero, Jocelyne, Shuryak, Igor, Ozarowski, Andrew, Hoffman, Brian M., Daly, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E9260
container_issue 44
container_start_page E9253
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Sharma, Ajay
Gaidamakova, Elena K.
Grichenko, Olga
Matrosova, Vera Y.
Hoeke, Veronika
Klimenkova, Polina
Conze, Isabel H.
Volpe, Robert P.
Tkavc, Rok
Gostinčar, Cene
Gunde-Cimerman, Nina
DiRuggiero, Jocelyne
Shuryak, Igor
Ozarowski, Andrew
Hoffman, Brian M.
Daly, Michael J.
description Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.
doi_str_mv 10.1073/pnas.1713608114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488879</jstor_id><sourcerecordid>26488879</sourcerecordid><originalsourceid>FETCH-LOGICAL-j223t-902f590cdcccb61f4909df6fecd051eb9551e6754abda273d5a5610cc4387b413</originalsourceid><addsrcrecordid>eNpdj89rFDEYhoNU7LZ67kkI9CK0U_M7k4tQSqtCxYueh0zyzTbLbLImmWL_e7NsKdTL9x7eh4fvReiMkitKNP-8i7ZcUU25Ij2l4g1aUWJop4QhR2hFCNNdL5g4RielbAghRvbkHTpmhggmqVqhdO1yKgXXB8A1A-A04TlMcImz9cHWkCLOUEKpNjrAoeB1eoQcwePxCdvYgL_Bt8Q_Iru4xGu7rA_dzma7tesINbi9IsW94T16O9m5wIfnPEW_725_3Xzr7n9-_X5zfd9tGOO1M4RN0hDnnXOjolPbY_ykJnCeSAqjke0qLYUdvWWae2mlosQ5wXs9CspP0ZeDd7eMW_AOYs12HnY5bG1-GpINw-smhoehTRuk0srwveDTsyCnPwuUOmxDcTDPNkJaykCNZJIppllDz_9DN2nJsc1rVK84N0rJRn08UJtSU375hCnR9702_B_rPY1B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986339665</pqid></control><display><type>article</type><title>Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharma, Ajay ; Gaidamakova, Elena K. ; Grichenko, Olga ; Matrosova, Vera Y. ; Hoeke, Veronika ; Klimenkova, Polina ; Conze, Isabel H. ; Volpe, Robert P. ; Tkavc, Rok ; Gostinčar, Cene ; Gunde-Cimerman, Nina ; DiRuggiero, Jocelyne ; Shuryak, Igor ; Ozarowski, Andrew ; Hoffman, Brian M. ; Daly, Michael J.</creator><creatorcontrib>Sharma, Ajay ; Gaidamakova, Elena K. ; Grichenko, Olga ; Matrosova, Vera Y. ; Hoeke, Veronika ; Klimenkova, Polina ; Conze, Isabel H. ; Volpe, Robert P. ; Tkavc, Rok ; Gostinčar, Cene ; Gunde-Cimerman, Nina ; DiRuggiero, Jocelyne ; Shuryak, Igor ; Ozarowski, Andrew ; Hoffman, Brian M. ; Daly, Michael J.</creatorcontrib><description>Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1713608114</identifier><identifier>PMID: 29042516</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Antioxidants ; Archaea ; Bacteria ; Biological Sciences ; Cell size ; Chelation ; Deoxyribonucleic acid ; Diagnostic systems ; DNA ; DNA damage ; DNA repair ; Electron paramagnetic resonance ; Enzymes ; Eukaryotes ; Fungi ; Gamma rays ; Genomes ; I.R. radiation ; Infrared radiation ; Ionizing radiation ; Manganese ions ; Metabolites ; Nucleotide sequence ; Nutritional status ; Orthophosphate ; Peptides ; Physical Sciences ; PNAS Plus ; Radiation ; Radiation tolerance ; Radioresistance ; Resonance ; Spectroscopy ; Splitting ; Superoxide dismutase ; Survival ; Symmetry ; γ Radiation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.E9253-E9260</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 31, 2017</rights><rights>Copyright © 2017 the Author(s). Published by PNAS. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488879$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488879$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids></links><search><creatorcontrib>Sharma, Ajay</creatorcontrib><creatorcontrib>Gaidamakova, Elena K.</creatorcontrib><creatorcontrib>Grichenko, Olga</creatorcontrib><creatorcontrib>Matrosova, Vera Y.</creatorcontrib><creatorcontrib>Hoeke, Veronika</creatorcontrib><creatorcontrib>Klimenkova, Polina</creatorcontrib><creatorcontrib>Conze, Isabel H.</creatorcontrib><creatorcontrib>Volpe, Robert P.</creatorcontrib><creatorcontrib>Tkavc, Rok</creatorcontrib><creatorcontrib>Gostinčar, Cene</creatorcontrib><creatorcontrib>Gunde-Cimerman, Nina</creatorcontrib><creatorcontrib>DiRuggiero, Jocelyne</creatorcontrib><creatorcontrib>Shuryak, Igor</creatorcontrib><creatorcontrib>Ozarowski, Andrew</creatorcontrib><creatorcontrib>Hoffman, Brian M.</creatorcontrib><creatorcontrib>Daly, Michael J.</creatorcontrib><title>Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.</description><subject>Antioxidants</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Cell size</subject><subject>Chelation</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic systems</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Electron paramagnetic resonance</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Fungi</subject><subject>Gamma rays</subject><subject>Genomes</subject><subject>I.R. radiation</subject><subject>Infrared radiation</subject><subject>Ionizing radiation</subject><subject>Manganese ions</subject><subject>Metabolites</subject><subject>Nucleotide sequence</subject><subject>Nutritional status</subject><subject>Orthophosphate</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Radioresistance</subject><subject>Resonance</subject><subject>Spectroscopy</subject><subject>Splitting</subject><subject>Superoxide dismutase</subject><subject>Survival</subject><subject>Symmetry</subject><subject>γ Radiation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdj89rFDEYhoNU7LZ67kkI9CK0U_M7k4tQSqtCxYueh0zyzTbLbLImmWL_e7NsKdTL9x7eh4fvReiMkitKNP-8i7ZcUU25Ij2l4g1aUWJop4QhR2hFCNNdL5g4RielbAghRvbkHTpmhggmqVqhdO1yKgXXB8A1A-A04TlMcImz9cHWkCLOUEKpNjrAoeB1eoQcwePxCdvYgL_Bt8Q_Iru4xGu7rA_dzma7tesINbi9IsW94T16O9m5wIfnPEW_725_3Xzr7n9-_X5zfd9tGOO1M4RN0hDnnXOjolPbY_ykJnCeSAqjke0qLYUdvWWae2mlosQ5wXs9CspP0ZeDd7eMW_AOYs12HnY5bG1-GpINw-smhoehTRuk0srwveDTsyCnPwuUOmxDcTDPNkJaykCNZJIppllDz_9DN2nJsc1rVK84N0rJRn08UJtSU375hCnR9702_B_rPY1B</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>Sharma, Ajay</creator><creator>Gaidamakova, Elena K.</creator><creator>Grichenko, Olga</creator><creator>Matrosova, Vera Y.</creator><creator>Hoeke, Veronika</creator><creator>Klimenkova, Polina</creator><creator>Conze, Isabel H.</creator><creator>Volpe, Robert P.</creator><creator>Tkavc, Rok</creator><creator>Gostinčar, Cene</creator><creator>Gunde-Cimerman, Nina</creator><creator>DiRuggiero, Jocelyne</creator><creator>Shuryak, Igor</creator><creator>Ozarowski, Andrew</creator><creator>Hoffman, Brian M.</creator><creator>Daly, Michael J.</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171031</creationdate><title>Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance</title><author>Sharma, Ajay ; Gaidamakova, Elena K. ; Grichenko, Olga ; Matrosova, Vera Y. ; Hoeke, Veronika ; Klimenkova, Polina ; Conze, Isabel H. ; Volpe, Robert P. ; Tkavc, Rok ; Gostinčar, Cene ; Gunde-Cimerman, Nina ; DiRuggiero, Jocelyne ; Shuryak, Igor ; Ozarowski, Andrew ; Hoffman, Brian M. ; Daly, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j223t-902f590cdcccb61f4909df6fecd051eb9551e6754abda273d5a5610cc4387b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antioxidants</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Cell size</topic><topic>Chelation</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic systems</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Electron paramagnetic resonance</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Fungi</topic><topic>Gamma rays</topic><topic>Genomes</topic><topic>I.R. radiation</topic><topic>Infrared radiation</topic><topic>Ionizing radiation</topic><topic>Manganese ions</topic><topic>Metabolites</topic><topic>Nucleotide sequence</topic><topic>Nutritional status</topic><topic>Orthophosphate</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Radioresistance</topic><topic>Resonance</topic><topic>Spectroscopy</topic><topic>Splitting</topic><topic>Superoxide dismutase</topic><topic>Survival</topic><topic>Symmetry</topic><topic>γ Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ajay</creatorcontrib><creatorcontrib>Gaidamakova, Elena K.</creatorcontrib><creatorcontrib>Grichenko, Olga</creatorcontrib><creatorcontrib>Matrosova, Vera Y.</creatorcontrib><creatorcontrib>Hoeke, Veronika</creatorcontrib><creatorcontrib>Klimenkova, Polina</creatorcontrib><creatorcontrib>Conze, Isabel H.</creatorcontrib><creatorcontrib>Volpe, Robert P.</creatorcontrib><creatorcontrib>Tkavc, Rok</creatorcontrib><creatorcontrib>Gostinčar, Cene</creatorcontrib><creatorcontrib>Gunde-Cimerman, Nina</creatorcontrib><creatorcontrib>DiRuggiero, Jocelyne</creatorcontrib><creatorcontrib>Shuryak, Igor</creatorcontrib><creatorcontrib>Ozarowski, Andrew</creatorcontrib><creatorcontrib>Hoffman, Brian M.</creatorcontrib><creatorcontrib>Daly, Michael J.</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Ajay</au><au>Gaidamakova, Elena K.</au><au>Grichenko, Olga</au><au>Matrosova, Vera Y.</au><au>Hoeke, Veronika</au><au>Klimenkova, Polina</au><au>Conze, Isabel H.</au><au>Volpe, Robert P.</au><au>Tkavc, Rok</au><au>Gostinčar, Cene</au><au>Gunde-Cimerman, Nina</au><au>DiRuggiero, Jocelyne</au><au>Shuryak, Igor</au><au>Ozarowski, Andrew</au><au>Hoffman, Brian M.</au><au>Daly, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2017-10-31</date><risdate>2017</risdate><volume>114</volume><issue>44</issue><spage>E9253</spage><epage>E9260</epage><pages>E9253-E9260</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>29042516</pmid><doi>10.1073/pnas.1713608114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.E9253-E9260
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676931
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antioxidants
Archaea
Bacteria
Biological Sciences
Cell size
Chelation
Deoxyribonucleic acid
Diagnostic systems
DNA
DNA damage
DNA repair
Electron paramagnetic resonance
Enzymes
Eukaryotes
Fungi
Gamma rays
Genomes
I.R. radiation
Infrared radiation
Ionizing radiation
Manganese ions
Metabolites
Nucleotide sequence
Nutritional status
Orthophosphate
Peptides
Physical Sciences
PNAS Plus
Radiation
Radiation tolerance
Radioresistance
Resonance
Spectroscopy
Splitting
Superoxide dismutase
Survival
Symmetry
γ Radiation
title Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Across%20the%20tree%20of%20life,%20radiation%20resistance%20is%20governed%20by%20antioxidant%20Mn2+,%20gauged%20by%20paramagnetic%20resonance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sharma,%20Ajay&rft.date=2017-10-31&rft.volume=114&rft.issue=44&rft.spage=E9253&rft.epage=E9260&rft.pages=E9253-E9260&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1713608114&rft_dat=%3Cjstor_pubme%3E26488879%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986339665&rft_id=info:pmid/29042516&rft_jstor_id=26488879&rfr_iscdi=true