In silico evidence for sequence-dependent nucleosome sliding

Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-10, Vol.114 (44), p.E9197-E9205
Hauptverfasser: Lequieu, Joshua, Schwartz, David C., de Pablo, Juan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E9205
container_issue 44
container_start_page E9197
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Lequieu, Joshua
Schwartz, David C.
de Pablo, Juan J.
description Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nucleosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nucleosome repositioning. The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.
doi_str_mv 10.1073/pnas.1705685114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488873</jstor_id><sourcerecordid>26488873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4514-84983f6d86a5e855aab41516655fd5ee496d6cee3add6dacae6a8c16f025dc433</originalsourceid><addsrcrecordid>eNpdkctLBSEUxiWKuj3WrYqhNm2mdHyMQgQRvSBoU2sxPVNe5upNZ4L--7zc3htFz8_P75wPoV2Cjwlu6ck8mHxMWsyF5ISwFTQhWJFaMIVX0QTjpq0la9gG2sx5ijFWXOJ1tNEo3MpG8gk6vQ1V9r23sYI37yBYqLqYqgyv4-JQO5hDKPdDFUbbQ8xxBlXuvfPheRutdabPsPO5b6HHq8uHi5v67v769uL8rraME1YcKEk74aQwHCTnxjwxwokQnHeOAzAlnLAA1DgnnLEGhJGWiA433FlG6RY6W-rOx6cZOFvcJNPrefIzk951NF7_rQT_op_jm-aiFVKyInCwFIh58DpbP4B9sTEEsIMmrAyG8AIdff6SYmk-D3rms4W-NwHimDVRvC1zLUtBD_-h0zimUGZQKCkoVUwtbJ8sKZtizgm6b8cE60V8ehGf_omvvNj_3eg3_5VXAfaWwDQPMf3UBZNStpR-APpwoDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986339493</pqid></control><display><type>article</type><title>In silico evidence for sequence-dependent nucleosome sliding</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lequieu, Joshua ; Schwartz, David C. ; de Pablo, Juan J.</creator><creatorcontrib>Lequieu, Joshua ; Schwartz, David C. ; de Pablo, Juan J. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nucleosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nucleosome repositioning. The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1705685114</identifier><identifier>PMID: 29078285</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>advanced sampling techniques ; BASIC BIOLOGICAL SCIENCES ; Chromatin ; Chromatin - genetics ; Chromatin Assembly and Disassembly - genetics ; chromatin dynamics ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; Free energy ; Gene Silencing - physiology ; Genome - genetics ; Genomes ; Histone H4 ; Histones - genetics ; Models, Molecular ; molecular simulation ; Nuclei (cytology) ; Nucleosomes ; Nucleosomes - genetics ; Nucleotide sequence ; nudeosome repositioning ; Physical Sciences ; PNAS Plus ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.E9197-E9205</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Published under the PNAS license.</rights><rights>Copyright National Academy of Sciences Oct 31, 2017</rights><rights>Published under the . 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4514-84983f6d86a5e855aab41516655fd5ee496d6cee3add6dacae6a8c16f025dc433</citedby><cites>FETCH-LOGICAL-c4514-84983f6d86a5e855aab41516655fd5ee496d6cee3add6dacae6a8c16f025dc433</cites><orcidid>0000-0001-9480-0989 ; 0000000194800989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488873$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488873$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29078285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1400015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lequieu, Joshua</creatorcontrib><creatorcontrib>Schwartz, David C.</creatorcontrib><creatorcontrib>de Pablo, Juan J.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>In silico evidence for sequence-dependent nucleosome sliding</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nucleosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nucleosome repositioning. The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.</description><subject>advanced sampling techniques</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>chromatin dynamics</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Free energy</subject><subject>Gene Silencing - physiology</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Histone H4</subject><subject>Histones - genetics</subject><subject>Models, Molecular</subject><subject>molecular simulation</subject><subject>Nuclei (cytology)</subject><subject>Nucleosomes</subject><subject>Nucleosomes - genetics</subject><subject>Nucleotide sequence</subject><subject>nudeosome repositioning</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLBSEUxiWKuj3WrYqhNm2mdHyMQgQRvSBoU2sxPVNe5upNZ4L--7zc3htFz8_P75wPoV2Cjwlu6ck8mHxMWsyF5ISwFTQhWJFaMIVX0QTjpq0la9gG2sx5ijFWXOJ1tNEo3MpG8gk6vQ1V9r23sYI37yBYqLqYqgyv4-JQO5hDKPdDFUbbQ8xxBlXuvfPheRutdabPsPO5b6HHq8uHi5v67v769uL8rraME1YcKEk74aQwHCTnxjwxwokQnHeOAzAlnLAA1DgnnLEGhJGWiA433FlG6RY6W-rOx6cZOFvcJNPrefIzk951NF7_rQT_op_jm-aiFVKyInCwFIh58DpbP4B9sTEEsIMmrAyG8AIdff6SYmk-D3rms4W-NwHimDVRvC1zLUtBD_-h0zimUGZQKCkoVUwtbJ8sKZtizgm6b8cE60V8ehGf_omvvNj_3eg3_5VXAfaWwDQPMf3UBZNStpR-APpwoDU</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>Lequieu, Joshua</creator><creator>Schwartz, David C.</creator><creator>de Pablo, Juan J.</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9480-0989</orcidid><orcidid>https://orcid.org/0000000194800989</orcidid></search><sort><creationdate>20171031</creationdate><title>In silico evidence for sequence-dependent nucleosome sliding</title><author>Lequieu, Joshua ; Schwartz, David C. ; de Pablo, Juan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4514-84983f6d86a5e855aab41516655fd5ee496d6cee3add6dacae6a8c16f025dc433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>advanced sampling techniques</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>chromatin dynamics</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Free energy</topic><topic>Gene Silencing - physiology</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Histone H4</topic><topic>Histones - genetics</topic><topic>Models, Molecular</topic><topic>molecular simulation</topic><topic>Nuclei (cytology)</topic><topic>Nucleosomes</topic><topic>Nucleosomes - genetics</topic><topic>Nucleotide sequence</topic><topic>nudeosome repositioning</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lequieu, Joshua</creatorcontrib><creatorcontrib>Schwartz, David C.</creatorcontrib><creatorcontrib>de Pablo, Juan J.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lequieu, Joshua</au><au>Schwartz, David C.</au><au>de Pablo, Juan J.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico evidence for sequence-dependent nucleosome sliding</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-10-31</date><risdate>2017</risdate><volume>114</volume><issue>44</issue><spage>E9197</spage><epage>E9205</epage><pages>E9197-E9205</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nucleosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nucleosome repositioning. The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29078285</pmid><doi>10.1073/pnas.1705685114</doi><orcidid>https://orcid.org/0000-0001-9480-0989</orcidid><orcidid>https://orcid.org/0000000194800989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (44), p.E9197-E9205
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676884
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects advanced sampling techniques
BASIC BIOLOGICAL SCIENCES
Chromatin
Chromatin - genetics
Chromatin Assembly and Disassembly - genetics
chromatin dynamics
Computer Simulation
Deoxyribonucleic acid
DNA
DNA - genetics
Free energy
Gene Silencing - physiology
Genome - genetics
Genomes
Histone H4
Histones - genetics
Models, Molecular
molecular simulation
Nuclei (cytology)
Nucleosomes
Nucleosomes - genetics
Nucleotide sequence
nudeosome repositioning
Physical Sciences
PNAS Plus
Proteins
title In silico evidence for sequence-dependent nucleosome sliding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20evidence%20for%20sequence-dependent%20nucleosome%20sliding&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lequieu,%20Joshua&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-10-31&rft.volume=114&rft.issue=44&rft.spage=E9197&rft.epage=E9205&rft.pages=E9197-E9205&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1705685114&rft_dat=%3Cjstor_pubme%3E26488873%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986339493&rft_id=info:pmid/29078285&rft_jstor_id=26488873&rfr_iscdi=true