Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly

Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2017-11, Vol.216 (11), p.3831-3846
Hauptverfasser: Anderson, Garret R, Maxeiner, Stephan, Sando, Richard, Tsetsenis, Theodoros, Malenka, Robert C, Südhof, Thomas C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3846
container_issue 11
container_start_page 3831
container_title The Journal of cell biology
container_volume 216
creator Anderson, Garret R
Maxeiner, Stephan
Sando, Richard
Tsetsenis, Theodoros
Malenka, Robert C
Südhof, Thomas C
description Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, controls the numbers of a specific subset of synapses in CA1-region hippocampal neurons, suggesting that Lphn2 acts as a synaptic target-recognition molecule. In cultured hippocampal neurons, Lphn2 maintained synapse numbers via a postsynaptic instead of a presynaptic mechanism, which was surprising given its presumptive role as an α-latrotoxin receptor. In CA1-region neurons in vivo, Lphn2 was specifically targeted to dendritic spines in the stratum lacunosum-moleculare, which form synapses with presynaptic entorhinal cortex afferents. In this study, postsynaptic deletion of Lphn2 selectively decreased spine numbers and impaired synaptic inputs from entorhinal but not Schaffer-collateral afferents. Behaviorally, loss of Lphn2 from the CA1 region increased spatial memory retention but decreased learning of sequential spatial memory tasks. Thus, Lphn2 appears to control synapse numbers in the entorhinal cortex/CA1 region circuit by acting as a domain-specific postsynaptic target-recognition molecule.
doi_str_mv 10.1083/jcb.201703042
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5674891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980716271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d657af45d5c653e86bb8b68d55c9aa374ee010bd428beb0e812c31365d0c6eee3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhyBVF4tJLyvgrcS5IaEVbpEpUVTlbtjO78cqJg-1F2n9PlpZV4TSHefTonXkJeU_hkoLin3bOXjKgLXAQ7AVZUSmgVlTAS7ICYLTuJJNn5E3OOwAQreCvyRlTXcso0BWJdzGXfJjMXLyrTD9g9nGqru_W91UwJcV58MFPNatG7L0pmKti0hZLldDF7eTLEfdThVOJafCTCfXg5zk6M84mVH_UGSuTM442HN6SVxsTMr57mufkx9XXh_VNffv9-tv6y23tBJWl7hvZmo2QvXSN5Kgaa5VtVC-l64zhrUAECrYXTFm0gIoyxylvZA-uQUR-Tj4_eue9XZK7JV4yQc_JjyYddDRe_7uZ_KC38ZeWTStURxfBxZMgxZ97zEWPPjsMwUwY91nTTjSCc5ByQT_-h-7iPi2fOFIKWtqw9iisHymXYs4JN6cwFPSxSr1UqU9VLvyH5xec6L_d8d-COpzq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980716271</pqid></control><display><type>article</type><title>Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Anderson, Garret R ; Maxeiner, Stephan ; Sando, Richard ; Tsetsenis, Theodoros ; Malenka, Robert C ; Südhof, Thomas C</creator><creatorcontrib>Anderson, Garret R ; Maxeiner, Stephan ; Sando, Richard ; Tsetsenis, Theodoros ; Malenka, Robert C ; Südhof, Thomas C</creatorcontrib><description>Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, controls the numbers of a specific subset of synapses in CA1-region hippocampal neurons, suggesting that Lphn2 acts as a synaptic target-recognition molecule. In cultured hippocampal neurons, Lphn2 maintained synapse numbers via a postsynaptic instead of a presynaptic mechanism, which was surprising given its presumptive role as an α-latrotoxin receptor. In CA1-region neurons in vivo, Lphn2 was specifically targeted to dendritic spines in the stratum lacunosum-moleculare, which form synapses with presynaptic entorhinal cortex afferents. In this study, postsynaptic deletion of Lphn2 selectively decreased spine numbers and impaired synaptic inputs from entorhinal but not Schaffer-collateral afferents. Behaviorally, loss of Lphn2 from the CA1 region increased spatial memory retention but decreased learning of sequential spatial memory tasks. Thus, Lphn2 appears to control synapse numbers in the entorhinal cortex/CA1 region circuit by acting as a domain-specific postsynaptic target-recognition molecule.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201703042</identifier><identifier>PMID: 28972101</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Adhesion ; Animals ; Assembly ; Behavior, Animal ; CA1 Region, Hippocampal - metabolism ; CA1 Region, Hippocampal - pathology ; CA1 Region, Hippocampal - physiopathology ; Cell adhesion &amp; migration ; Cells, Cultured ; Clonal deletion ; Cortex (entorhinal) ; Dendritic spines ; Dendritic Spines - metabolism ; Dendritic Spines - pathology ; Entorhinal Cortex - metabolism ; Entorhinal Cortex - pathology ; Entorhinal Cortex - physiopathology ; Fear ; G protein-coupled receptors ; Genotype ; Hippocampus ; Latrotoxin ; Maze Learning ; Memory ; Memory tasks ; Mental task performance ; Mice, Mutant Strains ; Motor Activity ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Phenotype ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - pathology ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Receptors, Peptide - genetics ; Receptors, Peptide - metabolism ; Rotarod Performance Test ; Smell ; Spatial analysis ; Spatial discrimination learning ; Spatial memory ; Spine ; Synapses ; Synaptic Membranes - metabolism ; Synaptic Membranes - pathology ; Synaptic Potentials ; Synaptogenesis ; Target recognition ; Time Factors ; Transfection</subject><ispartof>The Journal of cell biology, 2017-11, Vol.216 (11), p.3831-3846</ispartof><rights>2017 Anderson et al.</rights><rights>Copyright Rockefeller University Press Nov 2017</rights><rights>2017 Anderson et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d657af45d5c653e86bb8b68d55c9aa374ee010bd428beb0e812c31365d0c6eee3</citedby><cites>FETCH-LOGICAL-c415t-d657af45d5c653e86bb8b68d55c9aa374ee010bd428beb0e812c31365d0c6eee3</cites><orcidid>0000-0002-4472-695X ; 0000-0003-4866-4255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28972101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Garret R</creatorcontrib><creatorcontrib>Maxeiner, Stephan</creatorcontrib><creatorcontrib>Sando, Richard</creatorcontrib><creatorcontrib>Tsetsenis, Theodoros</creatorcontrib><creatorcontrib>Malenka, Robert C</creatorcontrib><creatorcontrib>Südhof, Thomas C</creatorcontrib><title>Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, controls the numbers of a specific subset of synapses in CA1-region hippocampal neurons, suggesting that Lphn2 acts as a synaptic target-recognition molecule. In cultured hippocampal neurons, Lphn2 maintained synapse numbers via a postsynaptic instead of a presynaptic mechanism, which was surprising given its presumptive role as an α-latrotoxin receptor. In CA1-region neurons in vivo, Lphn2 was specifically targeted to dendritic spines in the stratum lacunosum-moleculare, which form synapses with presynaptic entorhinal cortex afferents. In this study, postsynaptic deletion of Lphn2 selectively decreased spine numbers and impaired synaptic inputs from entorhinal but not Schaffer-collateral afferents. Behaviorally, loss of Lphn2 from the CA1 region increased spatial memory retention but decreased learning of sequential spatial memory tasks. Thus, Lphn2 appears to control synapse numbers in the entorhinal cortex/CA1 region circuit by acting as a domain-specific postsynaptic target-recognition molecule.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Assembly</subject><subject>Behavior, Animal</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>CA1 Region, Hippocampal - pathology</subject><subject>CA1 Region, Hippocampal - physiopathology</subject><subject>Cell adhesion &amp; migration</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Cortex (entorhinal)</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - pathology</subject><subject>Entorhinal Cortex - metabolism</subject><subject>Entorhinal Cortex - pathology</subject><subject>Entorhinal Cortex - physiopathology</subject><subject>Fear</subject><subject>G protein-coupled receptors</subject><subject>Genotype</subject><subject>Hippocampus</subject><subject>Latrotoxin</subject><subject>Maze Learning</subject><subject>Memory</subject><subject>Memory tasks</subject><subject>Mental task performance</subject><subject>Mice, Mutant Strains</subject><subject>Motor Activity</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - pathology</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Receptors, Peptide - genetics</subject><subject>Receptors, Peptide - metabolism</subject><subject>Rotarod Performance Test</subject><subject>Smell</subject><subject>Spatial analysis</subject><subject>Spatial discrimination learning</subject><subject>Spatial memory</subject><subject>Spine</subject><subject>Synapses</subject><subject>Synaptic Membranes - metabolism</subject><subject>Synaptic Membranes - pathology</subject><subject>Synaptic Potentials</subject><subject>Synaptogenesis</subject><subject>Target recognition</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhyBVF4tJLyvgrcS5IaEVbpEpUVTlbtjO78cqJg-1F2n9PlpZV4TSHefTonXkJeU_hkoLin3bOXjKgLXAQ7AVZUSmgVlTAS7ICYLTuJJNn5E3OOwAQreCvyRlTXcso0BWJdzGXfJjMXLyrTD9g9nGqru_W91UwJcV58MFPNatG7L0pmKti0hZLldDF7eTLEfdThVOJafCTCfXg5zk6M84mVH_UGSuTM442HN6SVxsTMr57mufkx9XXh_VNffv9-tv6y23tBJWl7hvZmo2QvXSN5Kgaa5VtVC-l64zhrUAECrYXTFm0gIoyxylvZA-uQUR-Tj4_eue9XZK7JV4yQc_JjyYddDRe_7uZ_KC38ZeWTStURxfBxZMgxZ97zEWPPjsMwUwY91nTTjSCc5ByQT_-h-7iPi2fOFIKWtqw9iisHymXYs4JN6cwFPSxSr1UqU9VLvyH5xec6L_d8d-COpzq</recordid><startdate>20171106</startdate><enddate>20171106</enddate><creator>Anderson, Garret R</creator><creator>Maxeiner, Stephan</creator><creator>Sando, Richard</creator><creator>Tsetsenis, Theodoros</creator><creator>Malenka, Robert C</creator><creator>Südhof, Thomas C</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4472-695X</orcidid><orcidid>https://orcid.org/0000-0003-4866-4255</orcidid></search><sort><creationdate>20171106</creationdate><title>Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly</title><author>Anderson, Garret R ; Maxeiner, Stephan ; Sando, Richard ; Tsetsenis, Theodoros ; Malenka, Robert C ; Südhof, Thomas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d657af45d5c653e86bb8b68d55c9aa374ee010bd428beb0e812c31365d0c6eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Assembly</topic><topic>Behavior, Animal</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>CA1 Region, Hippocampal - pathology</topic><topic>CA1 Region, Hippocampal - physiopathology</topic><topic>Cell adhesion &amp; migration</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Cortex (entorhinal)</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - pathology</topic><topic>Entorhinal Cortex - metabolism</topic><topic>Entorhinal Cortex - pathology</topic><topic>Entorhinal Cortex - physiopathology</topic><topic>Fear</topic><topic>G protein-coupled receptors</topic><topic>Genotype</topic><topic>Hippocampus</topic><topic>Latrotoxin</topic><topic>Maze Learning</topic><topic>Memory</topic><topic>Memory tasks</topic><topic>Mental task performance</topic><topic>Mice, Mutant Strains</topic><topic>Motor Activity</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - pathology</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Receptors, Peptide - genetics</topic><topic>Receptors, Peptide - metabolism</topic><topic>Rotarod Performance Test</topic><topic>Smell</topic><topic>Spatial analysis</topic><topic>Spatial discrimination learning</topic><topic>Spatial memory</topic><topic>Spine</topic><topic>Synapses</topic><topic>Synaptic Membranes - metabolism</topic><topic>Synaptic Membranes - pathology</topic><topic>Synaptic Potentials</topic><topic>Synaptogenesis</topic><topic>Target recognition</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Garret R</creatorcontrib><creatorcontrib>Maxeiner, Stephan</creatorcontrib><creatorcontrib>Sando, Richard</creatorcontrib><creatorcontrib>Tsetsenis, Theodoros</creatorcontrib><creatorcontrib>Malenka, Robert C</creatorcontrib><creatorcontrib>Südhof, Thomas C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Garret R</au><au>Maxeiner, Stephan</au><au>Sando, Richard</au><au>Tsetsenis, Theodoros</au><au>Malenka, Robert C</au><au>Südhof, Thomas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2017-11-06</date><risdate>2017</risdate><volume>216</volume><issue>11</issue><spage>3831</spage><epage>3846</epage><pages>3831-3846</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, controls the numbers of a specific subset of synapses in CA1-region hippocampal neurons, suggesting that Lphn2 acts as a synaptic target-recognition molecule. In cultured hippocampal neurons, Lphn2 maintained synapse numbers via a postsynaptic instead of a presynaptic mechanism, which was surprising given its presumptive role as an α-latrotoxin receptor. In CA1-region neurons in vivo, Lphn2 was specifically targeted to dendritic spines in the stratum lacunosum-moleculare, which form synapses with presynaptic entorhinal cortex afferents. In this study, postsynaptic deletion of Lphn2 selectively decreased spine numbers and impaired synaptic inputs from entorhinal but not Schaffer-collateral afferents. Behaviorally, loss of Lphn2 from the CA1 region increased spatial memory retention but decreased learning of sequential spatial memory tasks. Thus, Lphn2 appears to control synapse numbers in the entorhinal cortex/CA1 region circuit by acting as a domain-specific postsynaptic target-recognition molecule.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>28972101</pmid><doi>10.1083/jcb.201703042</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4472-695X</orcidid><orcidid>https://orcid.org/0000-0003-4866-4255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2017-11, Vol.216 (11), p.3831-3846
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5674891
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adhesion
Animals
Assembly
Behavior, Animal
CA1 Region, Hippocampal - metabolism
CA1 Region, Hippocampal - pathology
CA1 Region, Hippocampal - physiopathology
Cell adhesion & migration
Cells, Cultured
Clonal deletion
Cortex (entorhinal)
Dendritic spines
Dendritic Spines - metabolism
Dendritic Spines - pathology
Entorhinal Cortex - metabolism
Entorhinal Cortex - pathology
Entorhinal Cortex - physiopathology
Fear
G protein-coupled receptors
Genotype
Hippocampus
Latrotoxin
Maze Learning
Memory
Memory tasks
Mental task performance
Mice, Mutant Strains
Motor Activity
Neurons
Neurons - metabolism
Neurons - pathology
Neurosciences
Phenotype
Presynaptic Terminals - metabolism
Presynaptic Terminals - pathology
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Receptors, Peptide - genetics
Receptors, Peptide - metabolism
Rotarod Performance Test
Smell
Spatial analysis
Spatial discrimination learning
Spatial memory
Spine
Synapses
Synaptic Membranes - metabolism
Synaptic Membranes - pathology
Synaptic Potentials
Synaptogenesis
Target recognition
Time Factors
Transfection
title Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postsynaptic%20adhesion%20GPCR%20latrophilin-2%20mediates%20target%20recognition%20in%20entorhinal-hippocampal%20synapse%20assembly&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Anderson,%20Garret%20R&rft.date=2017-11-06&rft.volume=216&rft.issue=11&rft.spage=3831&rft.epage=3846&rft.pages=3831-3846&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201703042&rft_dat=%3Cproquest_pubme%3E1980716271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980716271&rft_id=info:pmid/28972101&rfr_iscdi=true