Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions

We study the motion of a buoyant or a nearly neutrally buoyant nano-sized spheroid in a fluid filled tube without or with an imposed pressure gradient (weak Poiseuille flow). The fluctuating hydrodynamics approach and the deterministic method are both employed. We ensure that the fluctuation–dissipa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-06, Vol.821, p.117-152
Hauptverfasser: Ramakrishnan, N., Wang, Y., Eckmann, D. M., Ayyaswamy, P. S., Radhakrishnan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 117
container_title Journal of fluid mechanics
container_volume 821
creator Ramakrishnan, N.
Wang, Y.
Eckmann, D. M.
Ayyaswamy, P. S.
Radhakrishnan, R.
description We study the motion of a buoyant or a nearly neutrally buoyant nano-sized spheroid in a fluid filled tube without or with an imposed pressure gradient (weak Poiseuille flow). The fluctuating hydrodynamics approach and the deterministic method are both employed. We ensure that the fluctuation–dissipation relation and the principle of thermal equipartition of energy are both satisfied. The major focus is on the effect of the confining boundary. Results for the velocity and the angular velocity autocorrelations (VACF and AVACF), the diffusivities and the drag and the lift forces as functions of the shape, the aspect ratio, the inclination angle and the proximity to the wall are presented. For the parameters considered, the boundary modifies the VACF and AVACF such that three distinct regimes are discernible – an initial exponential decay followed by an algebraic decay culminating in a second exponential decay. The first is due to the thermal noise, the algebraic regime is due both to the thermal noise and the hydrodynamic correlations, while the second exponential decay shows the effect of momentum reflection from the confining wall. Our predictions display excellent comparison with published results for the algebraic regime (the only regime for which earlier results exist). We also discuss the role of the off-diagonal elements of the mobility and the diffusivity tensors that enable the quantifications of the degree of lift and margination of the nanocarrier. Our study covers a range of parameters that are of wide applicability in nanotechnology, microrheology and in targeted drug delivery.
doi_str_mv 10.1017/jfm.2017.182
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5669124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_182</cupid><sourcerecordid>2021785857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-729745477bf70e98cd2106c13b2106ff294cbaadeec394922c36e52d0f7ed513</originalsourceid><addsrcrecordid>eNptkUtPAyEURonR2FrduTaTuHUqMMNQXJio8ZXUuOlawvCwNDNQYWoz_14a6ytxdQn3cO4NHwDHCI4RRPR8YdoxTocxmuAdMERlxXJalWQXDCHEOEcIwwE4iHEBISogo_tggBmCjDA4BC9PvrPeZd5kInPC-Twu5zp4qzLr0pXsG-tUsFI02buOUTeZafz6IrsOfu2sSIxT2bxXwaveidbK9K7TQciNNh6CPSOaqI-2dQRmd7ezm4d8-nz_eHM1zWVJUJdTzGhJSkprQ6FmE6kwgpVERb2pxmBWyloIpbUsWMkwlkWlCVbQUK0IKkbg8lO7XNWtVlK7LoiGL4NtRei5F5b_7Tg756_-nZOqYgiXSXC6FQT_ttKx4wu_Ci6tzDHEiE7IhNBEnX1SMvgYgzbfExDkmzB4CoNvwuApjISf_N7qG_76_QSMtz7R1sGqV_0z9l_jB5Udlgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021785857</pqid></control><display><type>article</type><title>Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions</title><source>Cambridge University Press Journals Complete</source><creator>Ramakrishnan, N. ; Wang, Y. ; Eckmann, D. M. ; Ayyaswamy, P. S. ; Radhakrishnan, R.</creator><creatorcontrib>Ramakrishnan, N. ; Wang, Y. ; Eckmann, D. M. ; Ayyaswamy, P. S. ; Radhakrishnan, R.</creatorcontrib><description>We study the motion of a buoyant or a nearly neutrally buoyant nano-sized spheroid in a fluid filled tube without or with an imposed pressure gradient (weak Poiseuille flow). The fluctuating hydrodynamics approach and the deterministic method are both employed. We ensure that the fluctuation–dissipation relation and the principle of thermal equipartition of energy are both satisfied. The major focus is on the effect of the confining boundary. Results for the velocity and the angular velocity autocorrelations (VACF and AVACF), the diffusivities and the drag and the lift forces as functions of the shape, the aspect ratio, the inclination angle and the proximity to the wall are presented. For the parameters considered, the boundary modifies the VACF and AVACF such that three distinct regimes are discernible – an initial exponential decay followed by an algebraic decay culminating in a second exponential decay. The first is due to the thermal noise, the algebraic regime is due both to the thermal noise and the hydrodynamic correlations, while the second exponential decay shows the effect of momentum reflection from the confining wall. Our predictions display excellent comparison with published results for the algebraic regime (the only regime for which earlier results exist). We also discuss the role of the off-diagonal elements of the mobility and the diffusivity tensors that enable the quantifications of the degree of lift and margination of the nanocarrier. Our study covers a range of parameters that are of wide applicability in nanotechnology, microrheology and in targeted drug delivery.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.182</identifier><identifier>PMID: 29109590</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Angular velocity ; Aspect ratio ; Confining ; Decay ; Drug delivery ; Drug delivery systems ; Finite volume method ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Forces (mechanics) ; Hydrodynamics ; Inclination angle ; Interactions ; Laminar flow ; Mathematical analysis ; Momentum ; Nanotechnology ; Parameter modification ; Parameters ; Pressure gradients ; Simulation ; Tensors ; Thermal noise ; Velocity</subject><ispartof>Journal of fluid mechanics, 2017-06, Vol.821, p.117-152</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-729745477bf70e98cd2106c13b2106ff294cbaadeec394922c36e52d0f7ed513</citedby><cites>FETCH-LOGICAL-c451t-729745477bf70e98cd2106c13b2106ff294cbaadeec394922c36e52d0f7ed513</cites><orcidid>0000-0002-5088-1673 ; 0000-0002-7888-9255 ; 0000-0003-0686-2851 ; 0000-0002-8954-8827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017001823/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29109590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramakrishnan, N.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Eckmann, D. M.</creatorcontrib><creatorcontrib>Ayyaswamy, P. S.</creatorcontrib><creatorcontrib>Radhakrishnan, R.</creatorcontrib><title>Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study the motion of a buoyant or a nearly neutrally buoyant nano-sized spheroid in a fluid filled tube without or with an imposed pressure gradient (weak Poiseuille flow). The fluctuating hydrodynamics approach and the deterministic method are both employed. We ensure that the fluctuation–dissipation relation and the principle of thermal equipartition of energy are both satisfied. The major focus is on the effect of the confining boundary. Results for the velocity and the angular velocity autocorrelations (VACF and AVACF), the diffusivities and the drag and the lift forces as functions of the shape, the aspect ratio, the inclination angle and the proximity to the wall are presented. For the parameters considered, the boundary modifies the VACF and AVACF such that three distinct regimes are discernible – an initial exponential decay followed by an algebraic decay culminating in a second exponential decay. The first is due to the thermal noise, the algebraic regime is due both to the thermal noise and the hydrodynamic correlations, while the second exponential decay shows the effect of momentum reflection from the confining wall. Our predictions display excellent comparison with published results for the algebraic regime (the only regime for which earlier results exist). We also discuss the role of the off-diagonal elements of the mobility and the diffusivity tensors that enable the quantifications of the degree of lift and margination of the nanocarrier. Our study covers a range of parameters that are of wide applicability in nanotechnology, microrheology and in targeted drug delivery.</description><subject>Algebra</subject><subject>Angular velocity</subject><subject>Aspect ratio</subject><subject>Confining</subject><subject>Decay</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Forces (mechanics)</subject><subject>Hydrodynamics</subject><subject>Inclination angle</subject><subject>Interactions</subject><subject>Laminar flow</subject><subject>Mathematical analysis</subject><subject>Momentum</subject><subject>Nanotechnology</subject><subject>Parameter modification</subject><subject>Parameters</subject><subject>Pressure gradients</subject><subject>Simulation</subject><subject>Tensors</subject><subject>Thermal noise</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkUtPAyEURonR2FrduTaTuHUqMMNQXJio8ZXUuOlawvCwNDNQYWoz_14a6ytxdQn3cO4NHwDHCI4RRPR8YdoxTocxmuAdMERlxXJalWQXDCHEOEcIwwE4iHEBISogo_tggBmCjDA4BC9PvrPeZd5kInPC-Twu5zp4qzLr0pXsG-tUsFI02buOUTeZafz6IrsOfu2sSIxT2bxXwaveidbK9K7TQciNNh6CPSOaqI-2dQRmd7ezm4d8-nz_eHM1zWVJUJdTzGhJSkprQ6FmE6kwgpVERb2pxmBWyloIpbUsWMkwlkWlCVbQUK0IKkbg8lO7XNWtVlK7LoiGL4NtRei5F5b_7Tg756_-nZOqYgiXSXC6FQT_ttKx4wu_Ci6tzDHEiE7IhNBEnX1SMvgYgzbfExDkmzB4CoNvwuApjISf_N7qG_76_QSMtz7R1sGqV_0z9l_jB5Udlgg</recordid><startdate>20170625</startdate><enddate>20170625</enddate><creator>Ramakrishnan, N.</creator><creator>Wang, Y.</creator><creator>Eckmann, D. M.</creator><creator>Ayyaswamy, P. S.</creator><creator>Radhakrishnan, R.</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5088-1673</orcidid><orcidid>https://orcid.org/0000-0002-7888-9255</orcidid><orcidid>https://orcid.org/0000-0003-0686-2851</orcidid><orcidid>https://orcid.org/0000-0002-8954-8827</orcidid></search><sort><creationdate>20170625</creationdate><title>Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions</title><author>Ramakrishnan, N. ; Wang, Y. ; Eckmann, D. M. ; Ayyaswamy, P. S. ; Radhakrishnan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-729745477bf70e98cd2106c13b2106ff294cbaadeec394922c36e52d0f7ed513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Angular velocity</topic><topic>Aspect ratio</topic><topic>Confining</topic><topic>Decay</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Forces (mechanics)</topic><topic>Hydrodynamics</topic><topic>Inclination angle</topic><topic>Interactions</topic><topic>Laminar flow</topic><topic>Mathematical analysis</topic><topic>Momentum</topic><topic>Nanotechnology</topic><topic>Parameter modification</topic><topic>Parameters</topic><topic>Pressure gradients</topic><topic>Simulation</topic><topic>Tensors</topic><topic>Thermal noise</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakrishnan, N.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Eckmann, D. M.</creatorcontrib><creatorcontrib>Ayyaswamy, P. S.</creatorcontrib><creatorcontrib>Radhakrishnan, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakrishnan, N.</au><au>Wang, Y.</au><au>Eckmann, D. M.</au><au>Ayyaswamy, P. S.</au><au>Radhakrishnan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-06-25</date><risdate>2017</risdate><volume>821</volume><spage>117</spage><epage>152</epage><pages>117-152</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the motion of a buoyant or a nearly neutrally buoyant nano-sized spheroid in a fluid filled tube without or with an imposed pressure gradient (weak Poiseuille flow). The fluctuating hydrodynamics approach and the deterministic method are both employed. We ensure that the fluctuation–dissipation relation and the principle of thermal equipartition of energy are both satisfied. The major focus is on the effect of the confining boundary. Results for the velocity and the angular velocity autocorrelations (VACF and AVACF), the diffusivities and the drag and the lift forces as functions of the shape, the aspect ratio, the inclination angle and the proximity to the wall are presented. For the parameters considered, the boundary modifies the VACF and AVACF such that three distinct regimes are discernible – an initial exponential decay followed by an algebraic decay culminating in a second exponential decay. The first is due to the thermal noise, the algebraic regime is due both to the thermal noise and the hydrodynamic correlations, while the second exponential decay shows the effect of momentum reflection from the confining wall. Our predictions display excellent comparison with published results for the algebraic regime (the only regime for which earlier results exist). We also discuss the role of the off-diagonal elements of the mobility and the diffusivity tensors that enable the quantifications of the degree of lift and margination of the nanocarrier. Our study covers a range of parameters that are of wide applicability in nanotechnology, microrheology and in targeted drug delivery.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>29109590</pmid><doi>10.1017/jfm.2017.182</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-5088-1673</orcidid><orcidid>https://orcid.org/0000-0002-7888-9255</orcidid><orcidid>https://orcid.org/0000-0003-0686-2851</orcidid><orcidid>https://orcid.org/0000-0002-8954-8827</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-06, Vol.821, p.117-152
issn 0022-1120
1469-7645
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5669124
source Cambridge University Press Journals Complete
subjects Algebra
Angular velocity
Aspect ratio
Confining
Decay
Drug delivery
Drug delivery systems
Finite volume method
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Forces (mechanics)
Hydrodynamics
Inclination angle
Interactions
Laminar flow
Mathematical analysis
Momentum
Nanotechnology
Parameter modification
Parameters
Pressure gradients
Simulation
Tensors
Thermal noise
Velocity
title Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20a%20nano-spheroid%20in%20a%20cylindrical%20vessel%20flow:%20Brownian%20and%20hydrodynamic%20interactions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ramakrishnan,%20N.&rft.date=2017-06-25&rft.volume=821&rft.spage=117&rft.epage=152&rft.pages=117-152&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.182&rft_dat=%3Cproquest_pubme%3E2021785857%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021785857&rft_id=info:pmid/29109590&rft_cupid=10_1017_jfm_2017_182&rfr_iscdi=true