The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology
Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projec...
Gespeichert in:
Veröffentlicht in: | Genome research 2017-11, Vol.27 (11), p.1916-1929 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1929 |
---|---|
container_issue | 11 |
container_start_page | 1916 |
container_title | Genome research |
container_volume | 27 |
creator | Gardner, Eugene J Lam, Vincent K Harris, Daniel N Chuang, Nelson T Scott, Emma C Pittard, W Stephen Mills, Ryan E Devine, Scott E |
description | Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings. |
doi_str_mv | 10.1101/gr.218032.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934286267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-385ecdeab79ab579194e4a0086cea71b5fc09fcecc1abf2f54ecc069610436ac3</originalsourceid><addsrcrecordid>eNpVkU1PwzAMhiMEYmNw5Ip6HIeOpE2yhAMSmsaHtInLOKIozdytKG1G0k7avydoY4KTbfnxa1svQtcEjwjB5G7lRxkROM9iyU9QnzAqU0a5PI05FiKVmJEeugjhE2OcUyHOUS8TgrGMyT76WKwhmbuispBMLdTQtMnMGd06nyycs8lwPp0tbu-Tjdt0VreVa9JgdKTr_RAchpZVMG4LfpfoZpkUlbNutbtEZ6W2Aa4OcYDen6aLyUs6e3t-nTzOUkNZ3qa5YGCWoIux1AUbSyIpUI2x4Ab0mBSsNFiWBowhuiizktGYYi45wTTn2uQD9LDX3XRFDUsTD_Laqo2vau13yulK_e801Vqt3FYxzoWkIgoMDwLefXUQWlXHf8Ba3YDrgiIyp5ngGR9HNN2jxrsQPJTHNQSrH0vUyqu9JbHkkb_5e9uR_vUg_wZMYoki</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934286267</pqid></control><display><type>article</type><title>The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gardner, Eugene J ; Lam, Vincent K ; Harris, Daniel N ; Chuang, Nelson T ; Scott, Emma C ; Pittard, W Stephen ; Mills, Ryan E ; Devine, Scott E</creator><creatorcontrib>Gardner, Eugene J ; Lam, Vincent K ; Harris, Daniel N ; Chuang, Nelson T ; Scott, Emma C ; Pittard, W Stephen ; Mills, Ryan E ; Devine, Scott E ; 1000 Genomes Project Consortium ; The 1000 Genomes Project Consortium</creatorcontrib><description>Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.218032.116</identifier><identifier>PMID: 28855259</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Computational Biology - methods ; Databases, Genetic ; DNA Transposable Elements ; Evolution, Molecular ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Method ; Neanderthals - genetics ; Pan troglodytes - genetics ; Polymorphism, Single Nucleotide ; Software ; Whole Genome Sequencing - methods</subject><ispartof>Genome research, 2017-11, Vol.27 (11), p.1916-1929</ispartof><rights>2017 Gardner et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-385ecdeab79ab579194e4a0086cea71b5fc09fcecc1abf2f54ecc069610436ac3</citedby><cites>FETCH-LOGICAL-c453t-385ecdeab79ab579194e4a0086cea71b5fc09fcecc1abf2f54ecc069610436ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28855259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardner, Eugene J</creatorcontrib><creatorcontrib>Lam, Vincent K</creatorcontrib><creatorcontrib>Harris, Daniel N</creatorcontrib><creatorcontrib>Chuang, Nelson T</creatorcontrib><creatorcontrib>Scott, Emma C</creatorcontrib><creatorcontrib>Pittard, W Stephen</creatorcontrib><creatorcontrib>Mills, Ryan E</creatorcontrib><creatorcontrib>Devine, Scott E</creatorcontrib><creatorcontrib>1000 Genomes Project Consortium</creatorcontrib><creatorcontrib>The 1000 Genomes Project Consortium</creatorcontrib><title>The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.</description><subject>Animals</subject><subject>Computational Biology - methods</subject><subject>Databases, Genetic</subject><subject>DNA Transposable Elements</subject><subject>Evolution, Molecular</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Method</subject><subject>Neanderthals - genetics</subject><subject>Pan troglodytes - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Software</subject><subject>Whole Genome Sequencing - methods</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PwzAMhiMEYmNw5Ip6HIeOpE2yhAMSmsaHtInLOKIozdytKG1G0k7avydoY4KTbfnxa1svQtcEjwjB5G7lRxkROM9iyU9QnzAqU0a5PI05FiKVmJEeugjhE2OcUyHOUS8TgrGMyT76WKwhmbuispBMLdTQtMnMGd06nyycs8lwPp0tbu-Tjdt0VreVa9JgdKTr_RAchpZVMG4LfpfoZpkUlbNutbtEZ6W2Aa4OcYDen6aLyUs6e3t-nTzOUkNZ3qa5YGCWoIux1AUbSyIpUI2x4Ab0mBSsNFiWBowhuiizktGYYi45wTTn2uQD9LDX3XRFDUsTD_Laqo2vau13yulK_e801Vqt3FYxzoWkIgoMDwLefXUQWlXHf8Ba3YDrgiIyp5ngGR9HNN2jxrsQPJTHNQSrH0vUyqu9JbHkkb_5e9uR_vUg_wZMYoki</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Gardner, Eugene J</creator><creator>Lam, Vincent K</creator><creator>Harris, Daniel N</creator><creator>Chuang, Nelson T</creator><creator>Scott, Emma C</creator><creator>Pittard, W Stephen</creator><creator>Mills, Ryan E</creator><creator>Devine, Scott E</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology</title><author>Gardner, Eugene J ; Lam, Vincent K ; Harris, Daniel N ; Chuang, Nelson T ; Scott, Emma C ; Pittard, W Stephen ; Mills, Ryan E ; Devine, Scott E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-385ecdeab79ab579194e4a0086cea71b5fc09fcecc1abf2f54ecc069610436ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Computational Biology - methods</topic><topic>Databases, Genetic</topic><topic>DNA Transposable Elements</topic><topic>Evolution, Molecular</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Method</topic><topic>Neanderthals - genetics</topic><topic>Pan troglodytes - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Software</topic><topic>Whole Genome Sequencing - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, Eugene J</creatorcontrib><creatorcontrib>Lam, Vincent K</creatorcontrib><creatorcontrib>Harris, Daniel N</creatorcontrib><creatorcontrib>Chuang, Nelson T</creatorcontrib><creatorcontrib>Scott, Emma C</creatorcontrib><creatorcontrib>Pittard, W Stephen</creatorcontrib><creatorcontrib>Mills, Ryan E</creatorcontrib><creatorcontrib>Devine, Scott E</creatorcontrib><creatorcontrib>1000 Genomes Project Consortium</creatorcontrib><creatorcontrib>The 1000 Genomes Project Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardner, Eugene J</au><au>Lam, Vincent K</au><au>Harris, Daniel N</au><au>Chuang, Nelson T</au><au>Scott, Emma C</au><au>Pittard, W Stephen</au><au>Mills, Ryan E</au><au>Devine, Scott E</au><aucorp>1000 Genomes Project Consortium</aucorp><aucorp>The 1000 Genomes Project Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>27</volume><issue>11</issue><spage>1916</spage><epage>1929</epage><pages>1916-1929</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>28855259</pmid><doi>10.1101/gr.218032.116</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2017-11, Vol.27 (11), p.1916-1929 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668948 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Computational Biology - methods Databases, Genetic DNA Transposable Elements Evolution, Molecular High-Throughput Nucleotide Sequencing - methods Humans Method Neanderthals - genetics Pan troglodytes - genetics Polymorphism, Single Nucleotide Software Whole Genome Sequencing - methods |
title | The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mobile%20Element%20Locator%20Tool%20(MELT):%20population-scale%20mobile%20element%20discovery%20and%20biology&rft.jtitle=Genome%20research&rft.au=Gardner,%20Eugene%20J&rft.aucorp=1000%20Genomes%20Project%20Consortium&rft.date=2017-11-01&rft.volume=27&rft.issue=11&rft.spage=1916&rft.epage=1929&rft.pages=1916-1929&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.218032.116&rft_dat=%3Cproquest_pubme%3E1934286267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934286267&rft_id=info:pmid/28855259&rfr_iscdi=true |