Tuning the motility and directionality of self-propelled colloids
Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Althou...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-11, Vol.7 (1), p.14891-12, Article 14891 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 14891 |
container_title | Scientific reports |
container_volume | 7 |
creator | Gomez-Solano, Juan Ruben Samin, Sela Lozano, Celia Ruedas-Batuecas, Pablo van Roij, René Bechinger, Clemens |
description | Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an
in-situ
change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties. |
doi_str_mv | 10.1038/s41598-017-14126-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127936995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</originalsourceid><addsrcrecordid>eNp9kUFL7DAQx4MoKuoX8CAFL176nEyTtLkIIvqeIHjRc8im0zXSbdakFfz2Rtcnq6C5TMj85p-Z-TN2yOEPh6o5TYJL3ZTA65ILjqqEDbaLIGSJFeLm2n2HHaT0CPlI1ILrbbaDGnRdK9xl53fT4Id5MT5QsQij7_34UtihLVofyY0-DPb9KXRFor4rlzEsqe-pLVzo--DbtM-2OtsnOviIe-z-6vLu4l95c_v3-uL8pnRSNWPJUTadJD1zs1nrZO7GNYCiIguuBk3Q1A4VCFC2I1AdSOsyJFpyCl3dVXvsbKW7nGYLah0NY7S9WUa_sPHFBOvN18zgH8w8PBupVFNVIgucfAjE8DRRGs3CJ5eHsQOFKRmulUKhQOuMHn9DH8MU8yqSQY61rpTW8jeKa6kROdRNpnBFuRhSitR9tszBvFlpVlaabKV5t9JALjpaH_az5L9xGahWQMqpYU5x7e-fZV8BE0qo7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959221078</pqid></control><display><type>article</type><title>Tuning the motility and directionality of self-propelled colloids</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gomez-Solano, Juan Ruben ; Samin, Sela ; Lozano, Celia ; Ruedas-Batuecas, Pablo ; van Roij, René ; Bechinger, Clemens</creator><creatorcontrib>Gomez-Solano, Juan Ruben ; Samin, Sela ; Lozano, Celia ; Ruedas-Batuecas, Pablo ; van Roij, René ; Bechinger, Clemens</creatorcontrib><description>Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an
in-situ
change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-14126-0</identifier><identifier>PMID: 29097762</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 639/766/530 ; Ambient temperature ; Colloids ; Humanities and Social Sciences ; Lasers ; Light intensity ; Microorganisms ; Mimicry ; Motility ; multidisciplinary ; Phototaxis ; Physical properties ; Science ; Science (multidisciplinary) ; Self ; Swimming ; Symmetry ; Velocity</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.14891-12, Article 14891</ispartof><rights>The Author(s) 2017</rights><rights>Scientific Reports is a copyright of Springer, 2017.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</citedby><cites>FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668334/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668334/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29097762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Solano, Juan Ruben</creatorcontrib><creatorcontrib>Samin, Sela</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><creatorcontrib>Ruedas-Batuecas, Pablo</creatorcontrib><creatorcontrib>van Roij, René</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><title>Tuning the motility and directionality of self-propelled colloids</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an
in-situ
change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.</description><subject>631/57</subject><subject>639/766/530</subject><subject>Ambient temperature</subject><subject>Colloids</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>Light intensity</subject><subject>Microorganisms</subject><subject>Mimicry</subject><subject>Motility</subject><subject>multidisciplinary</subject><subject>Phototaxis</subject><subject>Physical properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self</subject><subject>Swimming</subject><subject>Symmetry</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFL7DAQx4MoKuoX8CAFL176nEyTtLkIIvqeIHjRc8im0zXSbdakFfz2Rtcnq6C5TMj85p-Z-TN2yOEPh6o5TYJL3ZTA65ILjqqEDbaLIGSJFeLm2n2HHaT0CPlI1ILrbbaDGnRdK9xl53fT4Id5MT5QsQij7_34UtihLVofyY0-DPb9KXRFor4rlzEsqe-pLVzo--DbtM-2OtsnOviIe-z-6vLu4l95c_v3-uL8pnRSNWPJUTadJD1zs1nrZO7GNYCiIguuBk3Q1A4VCFC2I1AdSOsyJFpyCl3dVXvsbKW7nGYLah0NY7S9WUa_sPHFBOvN18zgH8w8PBupVFNVIgucfAjE8DRRGs3CJ5eHsQOFKRmulUKhQOuMHn9DH8MU8yqSQY61rpTW8jeKa6kROdRNpnBFuRhSitR9tszBvFlpVlaabKV5t9JALjpaH_az5L9xGahWQMqpYU5x7e-fZV8BE0qo7g</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Gomez-Solano, Juan Ruben</creator><creator>Samin, Sela</creator><creator>Lozano, Celia</creator><creator>Ruedas-Batuecas, Pablo</creator><creator>van Roij, René</creator><creator>Bechinger, Clemens</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171102</creationdate><title>Tuning the motility and directionality of self-propelled colloids</title><author>Gomez-Solano, Juan Ruben ; Samin, Sela ; Lozano, Celia ; Ruedas-Batuecas, Pablo ; van Roij, René ; Bechinger, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/57</topic><topic>639/766/530</topic><topic>Ambient temperature</topic><topic>Colloids</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>Light intensity</topic><topic>Microorganisms</topic><topic>Mimicry</topic><topic>Motility</topic><topic>multidisciplinary</topic><topic>Phototaxis</topic><topic>Physical properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self</topic><topic>Swimming</topic><topic>Symmetry</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Solano, Juan Ruben</creatorcontrib><creatorcontrib>Samin, Sela</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><creatorcontrib>Ruedas-Batuecas, Pablo</creatorcontrib><creatorcontrib>van Roij, René</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Solano, Juan Ruben</au><au>Samin, Sela</au><au>Lozano, Celia</au><au>Ruedas-Batuecas, Pablo</au><au>van Roij, René</au><au>Bechinger, Clemens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the motility and directionality of self-propelled colloids</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-02</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14891</spage><epage>12</epage><pages>14891-12</pages><artnum>14891</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an
in-situ
change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29097762</pmid><doi>10.1038/s41598-017-14126-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-11, Vol.7 (1), p.14891-12, Article 14891 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668334 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/57 639/766/530 Ambient temperature Colloids Humanities and Social Sciences Lasers Light intensity Microorganisms Mimicry Motility multidisciplinary Phototaxis Physical properties Science Science (multidisciplinary) Self Swimming Symmetry Velocity |
title | Tuning the motility and directionality of self-propelled colloids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20motility%20and%20directionality%20of%20self-propelled%20colloids&rft.jtitle=Scientific%20reports&rft.au=Gomez-Solano,%20Juan%20Ruben&rft.date=2017-11-02&rft.volume=7&rft.issue=1&rft.spage=14891&rft.epage=12&rft.pages=14891-12&rft.artnum=14891&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-14126-0&rft_dat=%3Cproquest_pubme%3E2127936995%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959221078&rft_id=info:pmid/29097762&rfr_iscdi=true |