Tuning the motility and directionality of self-propelled colloids

Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Althou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1), p.14891-12, Article 14891
Hauptverfasser: Gomez-Solano, Juan Ruben, Samin, Sela, Lozano, Celia, Ruedas-Batuecas, Pablo, van Roij, René, Bechinger, Clemens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 14891
container_title Scientific reports
container_volume 7
creator Gomez-Solano, Juan Ruben
Samin, Sela
Lozano, Celia
Ruedas-Batuecas, Pablo
van Roij, René
Bechinger, Clemens
description Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.
doi_str_mv 10.1038/s41598-017-14126-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127936995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</originalsourceid><addsrcrecordid>eNp9kUFL7DAQx4MoKuoX8CAFL176nEyTtLkIIvqeIHjRc8im0zXSbdakFfz2Rtcnq6C5TMj85p-Z-TN2yOEPh6o5TYJL3ZTA65ILjqqEDbaLIGSJFeLm2n2HHaT0CPlI1ILrbbaDGnRdK9xl53fT4Id5MT5QsQij7_34UtihLVofyY0-DPb9KXRFor4rlzEsqe-pLVzo--DbtM-2OtsnOviIe-z-6vLu4l95c_v3-uL8pnRSNWPJUTadJD1zs1nrZO7GNYCiIguuBk3Q1A4VCFC2I1AdSOsyJFpyCl3dVXvsbKW7nGYLah0NY7S9WUa_sPHFBOvN18zgH8w8PBupVFNVIgucfAjE8DRRGs3CJ5eHsQOFKRmulUKhQOuMHn9DH8MU8yqSQY61rpTW8jeKa6kROdRNpnBFuRhSitR9tszBvFlpVlaabKV5t9JALjpaH_az5L9xGahWQMqpYU5x7e-fZV8BE0qo7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959221078</pqid></control><display><type>article</type><title>Tuning the motility and directionality of self-propelled colloids</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gomez-Solano, Juan Ruben ; Samin, Sela ; Lozano, Celia ; Ruedas-Batuecas, Pablo ; van Roij, René ; Bechinger, Clemens</creator><creatorcontrib>Gomez-Solano, Juan Ruben ; Samin, Sela ; Lozano, Celia ; Ruedas-Batuecas, Pablo ; van Roij, René ; Bechinger, Clemens</creatorcontrib><description>Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-14126-0</identifier><identifier>PMID: 29097762</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 639/766/530 ; Ambient temperature ; Colloids ; Humanities and Social Sciences ; Lasers ; Light intensity ; Microorganisms ; Mimicry ; Motility ; multidisciplinary ; Phototaxis ; Physical properties ; Science ; Science (multidisciplinary) ; Self ; Swimming ; Symmetry ; Velocity</subject><ispartof>Scientific reports, 2017-11, Vol.7 (1), p.14891-12, Article 14891</ispartof><rights>The Author(s) 2017</rights><rights>Scientific Reports is a copyright of Springer, 2017.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</citedby><cites>FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668334/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668334/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29097762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Solano, Juan Ruben</creatorcontrib><creatorcontrib>Samin, Sela</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><creatorcontrib>Ruedas-Batuecas, Pablo</creatorcontrib><creatorcontrib>van Roij, René</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><title>Tuning the motility and directionality of self-propelled colloids</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.</description><subject>631/57</subject><subject>639/766/530</subject><subject>Ambient temperature</subject><subject>Colloids</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>Light intensity</subject><subject>Microorganisms</subject><subject>Mimicry</subject><subject>Motility</subject><subject>multidisciplinary</subject><subject>Phototaxis</subject><subject>Physical properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self</subject><subject>Swimming</subject><subject>Symmetry</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFL7DAQx4MoKuoX8CAFL176nEyTtLkIIvqeIHjRc8im0zXSbdakFfz2Rtcnq6C5TMj85p-Z-TN2yOEPh6o5TYJL3ZTA65ILjqqEDbaLIGSJFeLm2n2HHaT0CPlI1ILrbbaDGnRdK9xl53fT4Id5MT5QsQij7_34UtihLVofyY0-DPb9KXRFor4rlzEsqe-pLVzo--DbtM-2OtsnOviIe-z-6vLu4l95c_v3-uL8pnRSNWPJUTadJD1zs1nrZO7GNYCiIguuBk3Q1A4VCFC2I1AdSOsyJFpyCl3dVXvsbKW7nGYLah0NY7S9WUa_sPHFBOvN18zgH8w8PBupVFNVIgucfAjE8DRRGs3CJ5eHsQOFKRmulUKhQOuMHn9DH8MU8yqSQY61rpTW8jeKa6kROdRNpnBFuRhSitR9tszBvFlpVlaabKV5t9JALjpaH_az5L9xGahWQMqpYU5x7e-fZV8BE0qo7g</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Gomez-Solano, Juan Ruben</creator><creator>Samin, Sela</creator><creator>Lozano, Celia</creator><creator>Ruedas-Batuecas, Pablo</creator><creator>van Roij, René</creator><creator>Bechinger, Clemens</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171102</creationdate><title>Tuning the motility and directionality of self-propelled colloids</title><author>Gomez-Solano, Juan Ruben ; Samin, Sela ; Lozano, Celia ; Ruedas-Batuecas, Pablo ; van Roij, René ; Bechinger, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-1258f5e9bcbbdc5000c80243ea0c709e087c260406afe06f05ac0004dec62c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/57</topic><topic>639/766/530</topic><topic>Ambient temperature</topic><topic>Colloids</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>Light intensity</topic><topic>Microorganisms</topic><topic>Mimicry</topic><topic>Motility</topic><topic>multidisciplinary</topic><topic>Phototaxis</topic><topic>Physical properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self</topic><topic>Swimming</topic><topic>Symmetry</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Solano, Juan Ruben</creatorcontrib><creatorcontrib>Samin, Sela</creatorcontrib><creatorcontrib>Lozano, Celia</creatorcontrib><creatorcontrib>Ruedas-Batuecas, Pablo</creatorcontrib><creatorcontrib>van Roij, René</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Solano, Juan Ruben</au><au>Samin, Sela</au><au>Lozano, Celia</au><au>Ruedas-Batuecas, Pablo</au><au>van Roij, René</au><au>Bechinger, Clemens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the motility and directionality of self-propelled colloids</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-11-02</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14891</spage><epage>12</epage><pages>14891-12</pages><artnum>14891</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid’s swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid’s ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29097762</pmid><doi>10.1038/s41598-017-14126-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-11, Vol.7 (1), p.14891-12, Article 14891
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668334
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/57
639/766/530
Ambient temperature
Colloids
Humanities and Social Sciences
Lasers
Light intensity
Microorganisms
Mimicry
Motility
multidisciplinary
Phototaxis
Physical properties
Science
Science (multidisciplinary)
Self
Swimming
Symmetry
Velocity
title Tuning the motility and directionality of self-propelled colloids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20motility%20and%20directionality%20of%20self-propelled%20colloids&rft.jtitle=Scientific%20reports&rft.au=Gomez-Solano,%20Juan%20Ruben&rft.date=2017-11-02&rft.volume=7&rft.issue=1&rft.spage=14891&rft.epage=12&rft.pages=14891-12&rft.artnum=14891&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-14126-0&rft_dat=%3Cproquest_pubme%3E2127936995%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959221078&rft_id=info:pmid/29097762&rfr_iscdi=true