Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory
Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires de novo protein synthesis. However, the rol...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2018-06, Vol.23 (6), p.1394-1401 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1401 |
---|---|
container_issue | 6 |
container_start_page | 1394 |
container_title | Molecular psychiatry |
container_volume | 23 |
creator | Huynh, T N Santini, E Mojica, E Fink, A E Hall, B S Fetcho, R N Grosenick, L Deisseroth, K LeDoux, J E Liston, C Klann, E |
description | Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires
de novo
protein synthesis. However, the role of specific nodes of translational control in extinction is unknown. Using auditory threat conditioning in mice, we investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and its effector p70 S6 kinase 1 (S6K1) in the extinction of auditory threat conditioning. We found that rapamycin attenuated the consolidation of extinction memory. In contrast, genetic deletion and pharmacological inhibition of S6K1, a downstream effector of mTORC1, blocked within-session extinction, indicating a role for S6K1 independent of protein synthesis. Indeed, the activation of S6K1 during extinction required extracellular signal-regulated kinase (ERK) activation in the basolateral nucleus of the amygdala (BLA) and was necessary for increased phosphorylation of the GluA1 (Thr840) subunit of the AMPA receptor following extinction training. Mice exposed to brief uncontrollable stress showed impaired within-session extinction as well as a downregulation of ERK and S6K1 signaling in the amygdala. Finally, using fiber photometry we were able to record calcium signals
in vivo
, and we found that inhibition of S6K1 reduces extinction-induced changes in neuronal activity of the BLA. These results implicate a novel ERK-S6K1-GluA1 signaling cascade critically involved in extinction. |
doi_str_mv | 10.1038/mp.2017.99 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572649027</galeid><sourcerecordid>A572649027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-2c58db7407fed54e41714051979e49df13ae7ef827b9edf7d27c198cdb47cb53</originalsourceid><addsrcrecordid>eNptkl1vFCEUhidGY2v1xh9gSLwxmlmBhWG4abJp_EqaeGHvCQNntlQGpjCzcX-Q_9PB7Yc1vQLO-5wXzuFU1WuCVwSv24_DuKKYiJWUT6pjwkRTcy7ap8t-zWXNSMuOqhc5X2FcRP68OqIta4jA5Lj6vTGT2-nJxYBijzQKcQcejQKjHw366YLOgEhtYYRgIUzIhSlpA97PXidkdDbawhJF0yWgTufo9QRJexRm42HOxbVIethvrfYauYwSXM8ugUV9TAfRLIHsbl8BvyYXzN_TAENM-5fVs177DK9u1pPq4vOni7Ov9fn3L9_ONue14VhONTW8tZ1gWPRgOQNGBGGYEykkMGl7stYgoG-p6CTYXlgqDJGtsR0TpuPrk-r0YDvO3QDWQKnVqzG5Qae9itqph0pwl2obd4o3TUsJWwze3RikeD1DntTgcmmWDhDnrEgrGad4zctdb_9Dr-KcwlKdorihLaGE03tqqz0oF_pYul9M1YYL2jCJqVio1SOULj8zOBMD9G6JP0h4f0gwKeacoL-rkWBVZkoNoyozpaRc4Df_duUOvR2iBfhwAPIihS2k-1IesfsDs-fXbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062812152</pqid></control><display><type>article</type><title>Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Huynh, T N ; Santini, E ; Mojica, E ; Fink, A E ; Hall, B S ; Fetcho, R N ; Grosenick, L ; Deisseroth, K ; LeDoux, J E ; Liston, C ; Klann, E</creator><creatorcontrib>Huynh, T N ; Santini, E ; Mojica, E ; Fink, A E ; Hall, B S ; Fetcho, R N ; Grosenick, L ; Deisseroth, K ; LeDoux, J E ; Liston, C ; Klann, E</creatorcontrib><description>Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires
de novo
protein synthesis. However, the role of specific nodes of translational control in extinction is unknown. Using auditory threat conditioning in mice, we investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and its effector p70 S6 kinase 1 (S6K1) in the extinction of auditory threat conditioning. We found that rapamycin attenuated the consolidation of extinction memory. In contrast, genetic deletion and pharmacological inhibition of S6K1, a downstream effector of mTORC1, blocked within-session extinction, indicating a role for S6K1 independent of protein synthesis. Indeed, the activation of S6K1 during extinction required extracellular signal-regulated kinase (ERK) activation in the basolateral nucleus of the amygdala (BLA) and was necessary for increased phosphorylation of the GluA1 (Thr840) subunit of the AMPA receptor following extinction training. Mice exposed to brief uncontrollable stress showed impaired within-session extinction as well as a downregulation of ERK and S6K1 signaling in the amygdala. Finally, using fiber photometry we were able to record calcium signals
in vivo
, and we found that inhibition of S6K1 reduces extinction-induced changes in neuronal activity of the BLA. These results implicate a novel ERK-S6K1-GluA1 signaling cascade critically involved in extinction.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/mp.2017.99</identifier><identifier>PMID: 28461701</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 692/699 ; Activation ; Amygdala ; Amygdala - metabolism ; Amygdala - physiology ; Analysis ; Animals ; Basolateral Nuclear Complex - metabolism ; Behavioral Sciences ; Biological Psychology ; Calcium ; Calcium signalling ; Clonal deletion ; Conditioned stimulus ; Conditioning ; Conditioning, Classical - physiology ; Conditioning, Operant ; Consolidation ; Extinction behavior ; Extinction, Psychological - physiology ; Extracellular signal-regulated kinase ; Fear - physiology ; Inhibition ; Learning ; Male ; MAP Kinase Signaling System ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Medicine ; Medicine & Public Health ; Memory ; Memory - physiology ; Mice ; Mice, Inbred C57BL ; Neurons ; Neurosciences ; original-article ; p70 S6 kinase ; Pharmacotherapy ; Phosphorylation ; Photometry ; Post-traumatic stress disorder ; Protein biosynthesis ; Protein synthesis ; Psychiatry ; Rapamycin ; Receptors, AMPA - metabolism ; Ribosomal Protein S6 Kinases, 70-kDa - genetics ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Ribosomal Protein S6 Kinases, 90-kDa - genetics ; Ribosomal Protein S6 Kinases, 90-kDa - metabolism ; Sirolimus - pharmacology ; TOR protein ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Molecular psychiatry, 2018-06, Vol.23 (6), p.1394-1401</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-2c58db7407fed54e41714051979e49df13ae7ef827b9edf7d27c198cdb47cb53</citedby><cites>FETCH-LOGICAL-c509t-2c58db7407fed54e41714051979e49df13ae7ef827b9edf7d27c198cdb47cb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/mp.2017.99$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/mp.2017.99$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,41477,42546,51308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28461701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, T N</creatorcontrib><creatorcontrib>Santini, E</creatorcontrib><creatorcontrib>Mojica, E</creatorcontrib><creatorcontrib>Fink, A E</creatorcontrib><creatorcontrib>Hall, B S</creatorcontrib><creatorcontrib>Fetcho, R N</creatorcontrib><creatorcontrib>Grosenick, L</creatorcontrib><creatorcontrib>Deisseroth, K</creatorcontrib><creatorcontrib>LeDoux, J E</creatorcontrib><creatorcontrib>Liston, C</creatorcontrib><creatorcontrib>Klann, E</creatorcontrib><title>Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires
de novo
protein synthesis. However, the role of specific nodes of translational control in extinction is unknown. Using auditory threat conditioning in mice, we investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and its effector p70 S6 kinase 1 (S6K1) in the extinction of auditory threat conditioning. We found that rapamycin attenuated the consolidation of extinction memory. In contrast, genetic deletion and pharmacological inhibition of S6K1, a downstream effector of mTORC1, blocked within-session extinction, indicating a role for S6K1 independent of protein synthesis. Indeed, the activation of S6K1 during extinction required extracellular signal-regulated kinase (ERK) activation in the basolateral nucleus of the amygdala (BLA) and was necessary for increased phosphorylation of the GluA1 (Thr840) subunit of the AMPA receptor following extinction training. Mice exposed to brief uncontrollable stress showed impaired within-session extinction as well as a downregulation of ERK and S6K1 signaling in the amygdala. Finally, using fiber photometry we were able to record calcium signals
in vivo
, and we found that inhibition of S6K1 reduces extinction-induced changes in neuronal activity of the BLA. These results implicate a novel ERK-S6K1-GluA1 signaling cascade critically involved in extinction.</description><subject>631/378</subject><subject>692/699</subject><subject>Activation</subject><subject>Amygdala</subject><subject>Amygdala - metabolism</subject><subject>Amygdala - physiology</subject><subject>Analysis</subject><subject>Animals</subject><subject>Basolateral Nuclear Complex - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Calcium</subject><subject>Calcium signalling</subject><subject>Clonal deletion</subject><subject>Conditioned stimulus</subject><subject>Conditioning</subject><subject>Conditioning, Classical - physiology</subject><subject>Conditioning, Operant</subject><subject>Consolidation</subject><subject>Extinction behavior</subject><subject>Extinction, Psychological - physiology</subject><subject>Extracellular signal-regulated kinase</subject><subject>Fear - physiology</subject><subject>Inhibition</subject><subject>Learning</subject><subject>Male</subject><subject>MAP Kinase Signaling System</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>original-article</subject><subject>p70 S6 kinase</subject><subject>Pharmacotherapy</subject><subject>Phosphorylation</subject><subject>Photometry</subject><subject>Post-traumatic stress disorder</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Psychiatry</subject><subject>Rapamycin</subject><subject>Receptors, AMPA - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</subject><subject>Sirolimus - pharmacology</subject><subject>TOR protein</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkl1vFCEUhidGY2v1xh9gSLwxmlmBhWG4abJp_EqaeGHvCQNntlQGpjCzcX-Q_9PB7Yc1vQLO-5wXzuFU1WuCVwSv24_DuKKYiJWUT6pjwkRTcy7ap8t-zWXNSMuOqhc5X2FcRP68OqIta4jA5Lj6vTGT2-nJxYBijzQKcQcejQKjHw366YLOgEhtYYRgIUzIhSlpA97PXidkdDbawhJF0yWgTufo9QRJexRm42HOxbVIethvrfYauYwSXM8ugUV9TAfRLIHsbl8BvyYXzN_TAENM-5fVs177DK9u1pPq4vOni7Ov9fn3L9_ONue14VhONTW8tZ1gWPRgOQNGBGGYEykkMGl7stYgoG-p6CTYXlgqDJGtsR0TpuPrk-r0YDvO3QDWQKnVqzG5Qae9itqph0pwl2obd4o3TUsJWwze3RikeD1DntTgcmmWDhDnrEgrGad4zctdb_9Dr-KcwlKdorihLaGE03tqqz0oF_pYul9M1YYL2jCJqVio1SOULj8zOBMD9G6JP0h4f0gwKeacoL-rkWBVZkoNoyozpaRc4Df_duUOvR2iBfhwAPIihS2k-1IesfsDs-fXbg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Huynh, T N</creator><creator>Santini, E</creator><creator>Mojica, E</creator><creator>Fink, A E</creator><creator>Hall, B S</creator><creator>Fetcho, R N</creator><creator>Grosenick, L</creator><creator>Deisseroth, K</creator><creator>LeDoux, J E</creator><creator>Liston, C</creator><creator>Klann, E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180601</creationdate><title>Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory</title><author>Huynh, T N ; Santini, E ; Mojica, E ; Fink, A E ; Hall, B S ; Fetcho, R N ; Grosenick, L ; Deisseroth, K ; LeDoux, J E ; Liston, C ; Klann, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-2c58db7407fed54e41714051979e49df13ae7ef827b9edf7d27c198cdb47cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378</topic><topic>692/699</topic><topic>Activation</topic><topic>Amygdala</topic><topic>Amygdala - metabolism</topic><topic>Amygdala - physiology</topic><topic>Analysis</topic><topic>Animals</topic><topic>Basolateral Nuclear Complex - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Calcium</topic><topic>Calcium signalling</topic><topic>Clonal deletion</topic><topic>Conditioned stimulus</topic><topic>Conditioning</topic><topic>Conditioning, Classical - physiology</topic><topic>Conditioning, Operant</topic><topic>Consolidation</topic><topic>Extinction behavior</topic><topic>Extinction, Psychological - physiology</topic><topic>Extracellular signal-regulated kinase</topic><topic>Fear - physiology</topic><topic>Inhibition</topic><topic>Learning</topic><topic>Male</topic><topic>MAP Kinase Signaling System</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>original-article</topic><topic>p70 S6 kinase</topic><topic>Pharmacotherapy</topic><topic>Phosphorylation</topic><topic>Photometry</topic><topic>Post-traumatic stress disorder</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Psychiatry</topic><topic>Rapamycin</topic><topic>Receptors, AMPA - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</topic><topic>Sirolimus - pharmacology</topic><topic>TOR protein</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, T N</creatorcontrib><creatorcontrib>Santini, E</creatorcontrib><creatorcontrib>Mojica, E</creatorcontrib><creatorcontrib>Fink, A E</creatorcontrib><creatorcontrib>Hall, B S</creatorcontrib><creatorcontrib>Fetcho, R N</creatorcontrib><creatorcontrib>Grosenick, L</creatorcontrib><creatorcontrib>Deisseroth, K</creatorcontrib><creatorcontrib>LeDoux, J E</creatorcontrib><creatorcontrib>Liston, C</creatorcontrib><creatorcontrib>Klann, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, T N</au><au>Santini, E</au><au>Mojica, E</au><au>Fink, A E</au><au>Hall, B S</au><au>Fetcho, R N</au><au>Grosenick, L</au><au>Deisseroth, K</au><au>LeDoux, J E</au><au>Liston, C</au><au>Klann, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>23</volume><issue>6</issue><spage>1394</spage><epage>1401</epage><pages>1394-1401</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires
de novo
protein synthesis. However, the role of specific nodes of translational control in extinction is unknown. Using auditory threat conditioning in mice, we investigated the role of mechanistic target of rapamycin complex 1 (mTORC1) and its effector p70 S6 kinase 1 (S6K1) in the extinction of auditory threat conditioning. We found that rapamycin attenuated the consolidation of extinction memory. In contrast, genetic deletion and pharmacological inhibition of S6K1, a downstream effector of mTORC1, blocked within-session extinction, indicating a role for S6K1 independent of protein synthesis. Indeed, the activation of S6K1 during extinction required extracellular signal-regulated kinase (ERK) activation in the basolateral nucleus of the amygdala (BLA) and was necessary for increased phosphorylation of the GluA1 (Thr840) subunit of the AMPA receptor following extinction training. Mice exposed to brief uncontrollable stress showed impaired within-session extinction as well as a downregulation of ERK and S6K1 signaling in the amygdala. Finally, using fiber photometry we were able to record calcium signals
in vivo
, and we found that inhibition of S6K1 reduces extinction-induced changes in neuronal activity of the BLA. These results implicate a novel ERK-S6K1-GluA1 signaling cascade critically involved in extinction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28461701</pmid><doi>10.1038/mp.2017.99</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2018-06, Vol.23 (6), p.1394-1401 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668214 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 631/378 692/699 Activation Amygdala Amygdala - metabolism Amygdala - physiology Analysis Animals Basolateral Nuclear Complex - metabolism Behavioral Sciences Biological Psychology Calcium Calcium signalling Clonal deletion Conditioned stimulus Conditioning Conditioning, Classical - physiology Conditioning, Operant Consolidation Extinction behavior Extinction, Psychological - physiology Extracellular signal-regulated kinase Fear - physiology Inhibition Learning Male MAP Kinase Signaling System Mechanistic Target of Rapamycin Complex 1 - metabolism Medicine Medicine & Public Health Memory Memory - physiology Mice Mice, Inbred C57BL Neurons Neurosciences original-article p70 S6 kinase Pharmacotherapy Phosphorylation Photometry Post-traumatic stress disorder Protein biosynthesis Protein synthesis Psychiatry Rapamycin Receptors, AMPA - metabolism Ribosomal Protein S6 Kinases, 70-kDa - genetics Ribosomal Protein S6 Kinases, 70-kDa - metabolism Ribosomal Protein S6 Kinases, 90-kDa - genetics Ribosomal Protein S6 Kinases, 90-kDa - metabolism Sirolimus - pharmacology TOR protein α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20a%20novel%20p70%20S6%20kinase%201-dependent%20intracellular%20cascade%20in%20the%20basolateral%20nucleus%20of%20the%20amygdala%20is%20required%20for%20the%20acquisition%20of%20extinction%20memory&rft.jtitle=Molecular%20psychiatry&rft.au=Huynh,%20T%20N&rft.date=2018-06-01&rft.volume=23&rft.issue=6&rft.spage=1394&rft.epage=1401&rft.pages=1394-1401&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/mp.2017.99&rft_dat=%3Cgale_pubme%3EA572649027%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062812152&rft_id=info:pmid/28461701&rft_galeid=A572649027&rfr_iscdi=true |