Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources

Media-based event data—i.e., data comprised from reporting by media outlets—are widely used in political science research. However, events of interest (e.g., strikes, protests, conflict) are often underreported by these primary and secondary sources, producing incomplete data that risks inconsistenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2017-04, Vol.25 (2), p.223-240
Hauptverfasser: Cook, Scott J., Blas, Betsabe, Carroll, Raymond J., Sinha, Samiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 2
container_start_page 223
container_title Political analysis
container_volume 25
creator Cook, Scott J.
Blas, Betsabe
Carroll, Raymond J.
Sinha, Samiran
description Media-based event data—i.e., data comprised from reporting by media outlets—are widely used in political science research. However, events of interest (e.g., strikes, protests, conflict) are often underreported by these primary and secondary sources, producing incomplete data that risks inconsistency and bias in subsequent analysis. While general strategies exist to help ameliorate this bias, these methods do not make full use of the information often available to researchers. Specifically, much of the event data used in the social sciences is drawn from multiple, overlapping news sources (e.g., Agence France-Presse, Reuters). Therefore, we propose a novel maximum likelihood estimator that corrects for misclassification in data arising from multiple sources. In the most general formulation of our estimator, researchers can specify separate sets of predictors for the true-event model and each of the misclassification models characterizing whether a source fails to report on an event. As such, researchers are able to accurately test theories on both the causes of and reporting on an event of interest. Simulations evidence that our technique regularly outperforms current strategies that either neglect misclassification, the unique features of the data-generating process, or both. We also illustrate the utility of this method with a model of repression using the Social Conflict in Africa Database.
doi_str_mv 10.1017/pan.2016.13
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5667662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_pan_2016_13</cupid><jstor_id>26563335</jstor_id><sourcerecordid>26563335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-583533073ca793f67cc7b19068721c12c6cdd1931e870d2c007ad09f452667323</originalsourceid><addsrcrecordid>eNptkd9uFCEUxonR2Lp65bWGxBuTZrYwMDB4YVLb-idp00Tb6B1hgZmyzsAIMzZ9mz5Ln6ysu7bV9ArI9-Oc75wPgJcYzTHCfHdQfl4izOaYPALbmHJWUFGLx_mOKC-wqPkWeJbSEmWaC_EUbJUiSxSJbfDj9CLA7zH4NsFj9dNCBb-69nx8B_eMiTYl59vrqzNvbIx2CHHMb-g8_OC8ipfwQI0KNjH08HjqRjd0Fn4LU9Q2PQdPGtUl-2JzzsDZx8PT_c_F0cmnL_t7R4WmTIxFVZOKEMSJVlyQhnGt-QILxGpeYo1LzbQxWBBsa45MqRHiyiDR0KpkjJOSzMD7dd1hWvTWaOvHqDo5RNdngzIoJ_9VvDuXbfgtq_yfsVWBt5sCMfyabBpl75K2Xae8DVOSWDCMCKVihb75D13mYX0e7w9FOcIlzdTOmtIxpBRtc2sGI7lKTObE5CoxiUmmX9_3f8v-jSgDr9bAMo0h3umsYoTk5c1AsWmn-kV0prX3XD3Q8AZ1S6mh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961470124</pqid></control><display><type>article</type><title>Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources</title><source>Worldwide Political Science Abstracts</source><source>Cambridge Journals</source><source>Sociological Abstracts</source><source>JSTOR Archive Collection A-Z Listing</source><source>Political Science Complete</source><creator>Cook, Scott J. ; Blas, Betsabe ; Carroll, Raymond J. ; Sinha, Samiran</creator><creatorcontrib>Cook, Scott J. ; Blas, Betsabe ; Carroll, Raymond J. ; Sinha, Samiran</creatorcontrib><description>Media-based event data—i.e., data comprised from reporting by media outlets—are widely used in political science research. However, events of interest (e.g., strikes, protests, conflict) are often underreported by these primary and secondary sources, producing incomplete data that risks inconsistency and bias in subsequent analysis. While general strategies exist to help ameliorate this bias, these methods do not make full use of the information often available to researchers. Specifically, much of the event data used in the social sciences is drawn from multiple, overlapping news sources (e.g., Agence France-Presse, Reuters). Therefore, we propose a novel maximum likelihood estimator that corrects for misclassification in data arising from multiple sources. In the most general formulation of our estimator, researchers can specify separate sets of predictors for the true-event model and each of the misclassification models characterizing whether a source fails to report on an event. As such, researchers are able to accurately test theories on both the causes of and reporting on an event of interest. Simulations evidence that our technique regularly outperforms current strategies that either neglect misclassification, the unique features of the data-generating process, or both. We also illustrate the utility of this method with a model of repression using the Social Conflict in Africa Database.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1017/pan.2016.13</identifier><identifier>PMID: 29104409</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Bias ; Conflict resolution ; Data ; Disclosure ; Estimates ; Human rights ; Information sources ; International relations ; Mass media ; Media coverage ; Narcotics ; Oppression ; Political science ; Political science research ; Politics ; Researchers ; Social conflict ; Strikes ; Violence</subject><ispartof>Political analysis, 2017-04, Vol.25 (2), p.223-240</ispartof><rights>Copyright © The Author(s) 2017. Published by Cambridge University Press on behalf of the Society for Political Methodology.</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-583533073ca793f67cc7b19068721c12c6cdd1931e870d2c007ad09f452667323</citedby><cites>FETCH-LOGICAL-c469t-583533073ca793f67cc7b19068721c12c6cdd1931e870d2c007ad09f452667323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26563335$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198716000139/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,804,886,12850,27349,27929,27930,33779,55633,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29104409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, Scott J.</creatorcontrib><creatorcontrib>Blas, Betsabe</creatorcontrib><creatorcontrib>Carroll, Raymond J.</creatorcontrib><creatorcontrib>Sinha, Samiran</creatorcontrib><title>Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources</title><title>Political analysis</title><addtitle>Polit. Anal</addtitle><description>Media-based event data—i.e., data comprised from reporting by media outlets—are widely used in political science research. However, events of interest (e.g., strikes, protests, conflict) are often underreported by these primary and secondary sources, producing incomplete data that risks inconsistency and bias in subsequent analysis. While general strategies exist to help ameliorate this bias, these methods do not make full use of the information often available to researchers. Specifically, much of the event data used in the social sciences is drawn from multiple, overlapping news sources (e.g., Agence France-Presse, Reuters). Therefore, we propose a novel maximum likelihood estimator that corrects for misclassification in data arising from multiple sources. In the most general formulation of our estimator, researchers can specify separate sets of predictors for the true-event model and each of the misclassification models characterizing whether a source fails to report on an event. As such, researchers are able to accurately test theories on both the causes of and reporting on an event of interest. Simulations evidence that our technique regularly outperforms current strategies that either neglect misclassification, the unique features of the data-generating process, or both. We also illustrate the utility of this method with a model of repression using the Social Conflict in Africa Database.</description><subject>Bias</subject><subject>Conflict resolution</subject><subject>Data</subject><subject>Disclosure</subject><subject>Estimates</subject><subject>Human rights</subject><subject>Information sources</subject><subject>International relations</subject><subject>Mass media</subject><subject>Media coverage</subject><subject>Narcotics</subject><subject>Oppression</subject><subject>Political science</subject><subject>Political science research</subject><subject>Politics</subject><subject>Researchers</subject><subject>Social conflict</subject><subject>Strikes</subject><subject>Violence</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkd9uFCEUxonR2Lp65bWGxBuTZrYwMDB4YVLb-idp00Tb6B1hgZmyzsAIMzZ9mz5Ln6ysu7bV9ArI9-Oc75wPgJcYzTHCfHdQfl4izOaYPALbmHJWUFGLx_mOKC-wqPkWeJbSEmWaC_EUbJUiSxSJbfDj9CLA7zH4NsFj9dNCBb-69nx8B_eMiTYl59vrqzNvbIx2CHHMb-g8_OC8ipfwQI0KNjH08HjqRjd0Fn4LU9Q2PQdPGtUl-2JzzsDZx8PT_c_F0cmnL_t7R4WmTIxFVZOKEMSJVlyQhnGt-QILxGpeYo1LzbQxWBBsa45MqRHiyiDR0KpkjJOSzMD7dd1hWvTWaOvHqDo5RNdngzIoJ_9VvDuXbfgtq_yfsVWBt5sCMfyabBpl75K2Xae8DVOSWDCMCKVihb75D13mYX0e7w9FOcIlzdTOmtIxpBRtc2sGI7lKTObE5CoxiUmmX9_3f8v-jSgDr9bAMo0h3umsYoTk5c1AsWmn-kV0prX3XD3Q8AZ1S6mh</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Cook, Scott J.</creator><creator>Blas, Betsabe</creator><creator>Carroll, Raymond J.</creator><creator>Sinha, Samiran</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7UB</scope><scope>7XB</scope><scope>88F</scope><scope>88J</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DPSOV</scope><scope>DWI</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KC-</scope><scope>M1Q</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>WZK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201704</creationdate><title>Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources</title><author>Cook, Scott J. ; Blas, Betsabe ; Carroll, Raymond J. ; Sinha, Samiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-583533073ca793f67cc7b19068721c12c6cdd1931e870d2c007ad09f452667323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bias</topic><topic>Conflict resolution</topic><topic>Data</topic><topic>Disclosure</topic><topic>Estimates</topic><topic>Human rights</topic><topic>Information sources</topic><topic>International relations</topic><topic>Mass media</topic><topic>Media coverage</topic><topic>Narcotics</topic><topic>Oppression</topic><topic>Political science</topic><topic>Political science research</topic><topic>Politics</topic><topic>Researchers</topic><topic>Social conflict</topic><topic>Strikes</topic><topic>Violence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Scott J.</creatorcontrib><creatorcontrib>Blas, Betsabe</creatorcontrib><creatorcontrib>Carroll, Raymond J.</creatorcontrib><creatorcontrib>Sinha, Samiran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Worldwide Political Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Politics Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Politics Collection</collection><collection>Military Database</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Scott J.</au><au>Blas, Betsabe</au><au>Carroll, Raymond J.</au><au>Sinha, Samiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. Anal</addtitle><date>2017-04</date><risdate>2017</risdate><volume>25</volume><issue>2</issue><spage>223</spage><epage>240</epage><pages>223-240</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Media-based event data—i.e., data comprised from reporting by media outlets—are widely used in political science research. However, events of interest (e.g., strikes, protests, conflict) are often underreported by these primary and secondary sources, producing incomplete data that risks inconsistency and bias in subsequent analysis. While general strategies exist to help ameliorate this bias, these methods do not make full use of the information often available to researchers. Specifically, much of the event data used in the social sciences is drawn from multiple, overlapping news sources (e.g., Agence France-Presse, Reuters). Therefore, we propose a novel maximum likelihood estimator that corrects for misclassification in data arising from multiple sources. In the most general formulation of our estimator, researchers can specify separate sets of predictors for the true-event model and each of the misclassification models characterizing whether a source fails to report on an event. As such, researchers are able to accurately test theories on both the causes of and reporting on an event of interest. Simulations evidence that our technique regularly outperforms current strategies that either neglect misclassification, the unique features of the data-generating process, or both. We also illustrate the utility of this method with a model of repression using the Social Conflict in Africa Database.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>29104409</pmid><doi>10.1017/pan.2016.13</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2017-04, Vol.25 (2), p.223-240
issn 1047-1987
1476-4989
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5667662
source Worldwide Political Science Abstracts; Cambridge Journals; Sociological Abstracts; JSTOR Archive Collection A-Z Listing; Political Science Complete
subjects Bias
Conflict resolution
Data
Disclosure
Estimates
Human rights
Information sources
International relations
Mass media
Media coverage
Narcotics
Oppression
Political science
Political science research
Politics
Researchers
Social conflict
Strikes
Violence
title Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Wrongs%20Make%20a%20Right:%20Addressing%C2%A0Underreporting%20in%20Binary%20Data%20from%20Multiple%20Sources&rft.jtitle=Political%20analysis&rft.au=Cook,%20Scott%20J.&rft.date=2017-04&rft.volume=25&rft.issue=2&rft.spage=223&rft.epage=240&rft.pages=223-240&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1017/pan.2016.13&rft_dat=%3Cjstor_pubme%3E26563335%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961470124&rft_id=info:pmid/29104409&rft_cupid=10_1017_pan_2016_13&rft_jstor_id=26563335&rfr_iscdi=true