Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1
In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids. Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2017-09, Vol.175 (3), p.1407-1423 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1423 |
---|---|
container_issue | 3 |
container_start_page | 1407 |
container_title | Plant physiology (Bethesda) |
container_volume | 175 |
creator | Dolch, Lina-Juana Lupette, Josselin Tourcier, Guillaume Bedhomme, Mariette Collin, Séverine Magneschi, Leonardo Conte, Melissa Seddiki, Khawla Richard, Christelle Corre, Erwan Fourage, Laurent Laeuffer, Frédéric Richards, Robert Reith, Michael Rébeillé, Fabrice Jouhet, Juliette McGinn, Patrick Maréchal, Eric |
description | In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids.
Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the
Phaeodactylum
Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in
Phaeodactylum
. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho
enol
pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response. |
doi_str_mv | 10.1104/pp.17.01042 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_56644773</originalsourceid><addsrcrecordid>eNqljMtKxDAUhoMoTr2sfIG8QOtJmk47G0FEmYUX0Fm5CbE5U4-0SUii6NtbBzeuXf3ff-Fn7ExAJQSo8xAq0VYwo9xjhWhqWcpGdfusAJgZum61YEcpvQGAqIU6ZAvZraQC0RTs-Z5ypJ4_fJJFfoeWTMbEd2nG8gldIjdw4yy_7PuRJpPJu53fRBoGjIkb_oiTtzj-LP2W31Igm8QJO9iaMeHprx6zi5vrzdW6DO8vE9oeXY5m1CHOp_FLe0P6b-PoVQ_-QzfLpVJtW__74Bswq2BK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creator><creatorcontrib>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creatorcontrib><description>In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids.
Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the
Phaeodactylum
Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in
Phaeodactylum
. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho
enol
pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.01042</identifier><identifier>PMID: 28924015</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>Signaling and Response</subject><ispartof>Plant physiology (Bethesda), 2017-09, Vol.175 (3), p.1407-1423</ispartof><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</title><title>Plant physiology (Bethesda)</title><description>In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids.
Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the
Phaeodactylum
Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in
Phaeodactylum
. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho
enol
pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><subject>Signaling and Response</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqljMtKxDAUhoMoTr2sfIG8QOtJmk47G0FEmYUX0Fm5CbE5U4-0SUii6NtbBzeuXf3ff-Fn7ExAJQSo8xAq0VYwo9xjhWhqWcpGdfusAJgZum61YEcpvQGAqIU6ZAvZraQC0RTs-Z5ypJ4_fJJFfoeWTMbEd2nG8gldIjdw4yy_7PuRJpPJu53fRBoGjIkb_oiTtzj-LP2W31Igm8QJO9iaMeHprx6zi5vrzdW6DO8vE9oeXY5m1CHOp_FLe0P6b-PoVQ_-QzfLpVJtW__74Bswq2BK</recordid><startdate>20170918</startdate><enddate>20170918</enddate><creator>Dolch, Lina-Juana</creator><creator>Lupette, Josselin</creator><creator>Tourcier, Guillaume</creator><creator>Bedhomme, Mariette</creator><creator>Collin, Séverine</creator><creator>Magneschi, Leonardo</creator><creator>Conte, Melissa</creator><creator>Seddiki, Khawla</creator><creator>Richard, Christelle</creator><creator>Corre, Erwan</creator><creator>Fourage, Laurent</creator><creator>Laeuffer, Frédéric</creator><creator>Richards, Robert</creator><creator>Reith, Michael</creator><creator>Rébeillé, Fabrice</creator><creator>Jouhet, Juliette</creator><creator>McGinn, Patrick</creator><creator>Maréchal, Eric</creator><general>American Society of Plant Biologists</general><scope>5PM</scope></search><sort><creationdate>20170918</creationdate><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</title><author>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_56644773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Signaling and Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolch, Lina-Juana</au><au>Lupette, Josselin</au><au>Tourcier, Guillaume</au><au>Bedhomme, Mariette</au><au>Collin, Séverine</au><au>Magneschi, Leonardo</au><au>Conte, Melissa</au><au>Seddiki, Khawla</au><au>Richard, Christelle</au><au>Corre, Erwan</au><au>Fourage, Laurent</au><au>Laeuffer, Frédéric</au><au>Richards, Robert</au><au>Reith, Michael</au><au>Rébeillé, Fabrice</au><au>Jouhet, Juliette</au><au>McGinn, Patrick</au><au>Maréchal, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2017-09-18</date><risdate>2017</risdate><volume>175</volume><issue>3</issue><spage>1407</spage><epage>1423</epage><pages>1407-1423</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids.
Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the
Phaeodactylum
Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in
Phaeodactylum
. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho
enol
pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</abstract><pub>American Society of Plant Biologists</pub><pmid>28924015</pmid><doi>10.1104/pp.17.01042</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2017-09, Vol.175 (3), p.1407-1423 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477 |
source | JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Signaling and Response |
title | Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A05%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Mediates%20Nitrite-Sensing%20and%20Acclimation%20and%20Triggers%20a%20Remodeling%20of%20Lipids1&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Dolch,%20Lina-Juana&rft.date=2017-09-18&rft.volume=175&rft.issue=3&rft.spage=1407&rft.epage=1423&rft.pages=1407-1423&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.01042&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28924015&rfr_iscdi=true |