Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids
Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO wa...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2017-11, Vol.175 (3), p.1407-1423 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1423 |
---|---|
container_issue | 3 |
container_start_page | 1407 |
container_title | Plant physiology (Bethesda) |
container_volume | 175 |
creator | Dolch, Lina-Juana Lupette, Josselin Tourcier, Guillaume Bedhomme, Mariette Collin, Séverine Magneschi, Leonardo Conte, Melissa Seddiki, Khawla Richard, Christelle Corre, Erwan Fourage, Laurent Laeuffer, Frédéric Richards, Robert Reith, Michael Rébeillé, Fabrice Jouhet, Juliette McGinn, Patrick Maréchal, Eric |
description | Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response. |
doi_str_mv | 10.1104/pp.17.01042 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26374994</jstor_id><sourcerecordid>26374994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-ce1b467b830a8f6719ce35a4d066cd5f650b160d69c32c0ac014fbac27b9b0dd3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhxBmUIwhlmYk_klyQVhVQpIVKUA6cLMeebF1l42BnK_j3eHdL-ThYM5555vVYL2NPEZaIIF5P0xLrJeS0uscWKHlVVlI099kCIOfQNO0Je5TSNQAgR_GQnVRNWwlAuWDfPvk5eltc_PCOio_kvJkpFYfqTOUXGpMfN4UZXbGydvBbM_swHu6X0W82FFNhis-0DY6GPRn6Yu0n79Jj9qA3Q6Int_GUfX339vLsvFxfvP9wtlqXVgKfS0vYCVV3DQfT9KrG1hKXRjhQyjrZKwkdKnCqtbyyYCyg6Dtjq7prO3COn7I3R91p123JWRrnaAY9xbxr_KmD8frfzuiv9CbcaKmUEHWdBV4eBa7-GztfrfW-BpjJVsANZvbF7WMxfN9RmvXWJ0vDYEYKu6QxYzIfvkdfHVEbQ0qR-jttBL03Tk-TxlofjMv0879_ccf-dioDz47AdZpD_NNXvBZtK_gvLB6dZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940594031</pqid></control><display><type>article</type><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creator><creatorcontrib>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creatorcontrib><description>Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.01042</identifier><identifier>PMID: 28924015</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acclimatization - drug effects ; Adaptation, Physiological - drug effects ; Aldehydes - pharmacology ; Arginine - metabolism ; Biochemistry, Molecular Biology ; Caspases - metabolism ; Cell Death - drug effects ; Diatoms - cytology ; Diatoms - drug effects ; Diatoms - genetics ; Diatoms - metabolism ; Ferredoxins - metabolism ; Galactolipids - metabolism ; Galactosyltransferases - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Plant - drug effects ; Life Sciences ; Lipid Metabolism - drug effects ; Nitric Oxide - metabolism ; Nitrite Reductases - metabolism ; Nitrites - metabolism ; Plastids - metabolism ; S-Nitroso-N-Acetylpenicillamine - pharmacology ; SIGNALING AND RESPONSE ; Transcription, Genetic - drug effects ; Triglycerides - metabolism</subject><ispartof>Plant physiology (Bethesda), 2017-11, Vol.175 (3), p.1407-1423</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-ce1b467b830a8f6719ce35a4d066cd5f650b160d69c32c0ac014fbac27b9b0dd3</citedby><orcidid>0000-0002-0060-1696 ; 0000-0002-8140-4968 ; 0000-0002-0064-4872 ; 0000-0002-7842-575X ; 0000-0001-6354-2278 ; 0000-0002-4402-2194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26374994$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26374994$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28924015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01664940$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><subject>Acclimatization - drug effects</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Aldehydes - pharmacology</subject><subject>Arginine - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Caspases - metabolism</subject><subject>Cell Death - drug effects</subject><subject>Diatoms - cytology</subject><subject>Diatoms - drug effects</subject><subject>Diatoms - genetics</subject><subject>Diatoms - metabolism</subject><subject>Ferredoxins - metabolism</subject><subject>Galactolipids - metabolism</subject><subject>Galactosyltransferases - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Life Sciences</subject><subject>Lipid Metabolism - drug effects</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrite Reductases - metabolism</subject><subject>Nitrites - metabolism</subject><subject>Plastids - metabolism</subject><subject>S-Nitroso-N-Acetylpenicillamine - pharmacology</subject><subject>SIGNALING AND RESPONSE</subject><subject>Transcription, Genetic - drug effects</subject><subject>Triglycerides - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhxBmUIwhlmYk_klyQVhVQpIVKUA6cLMeebF1l42BnK_j3eHdL-ThYM5555vVYL2NPEZaIIF5P0xLrJeS0uscWKHlVVlI099kCIOfQNO0Je5TSNQAgR_GQnVRNWwlAuWDfPvk5eltc_PCOio_kvJkpFYfqTOUXGpMfN4UZXbGydvBbM_swHu6X0W82FFNhis-0DY6GPRn6Yu0n79Jj9qA3Q6Int_GUfX339vLsvFxfvP9wtlqXVgKfS0vYCVV3DQfT9KrG1hKXRjhQyjrZKwkdKnCqtbyyYCyg6Dtjq7prO3COn7I3R91p123JWRrnaAY9xbxr_KmD8frfzuiv9CbcaKmUEHWdBV4eBa7-GztfrfW-BpjJVsANZvbF7WMxfN9RmvXWJ0vDYEYKu6QxYzIfvkdfHVEbQ0qR-jttBL03Tk-TxlofjMv0879_ccf-dioDz47AdZpD_NNXvBZtK_gvLB6dZw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Dolch, Lina-Juana</creator><creator>Lupette, Josselin</creator><creator>Tourcier, Guillaume</creator><creator>Bedhomme, Mariette</creator><creator>Collin, Séverine</creator><creator>Magneschi, Leonardo</creator><creator>Conte, Melissa</creator><creator>Seddiki, Khawla</creator><creator>Richard, Christelle</creator><creator>Corre, Erwan</creator><creator>Fourage, Laurent</creator><creator>Laeuffer, Frédéric</creator><creator>Richards, Robert</creator><creator>Reith, Michael</creator><creator>Rébeillé, Fabrice</creator><creator>Jouhet, Juliette</creator><creator>McGinn, Patrick</creator><creator>Maréchal, Eric</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0060-1696</orcidid><orcidid>https://orcid.org/0000-0002-8140-4968</orcidid><orcidid>https://orcid.org/0000-0002-0064-4872</orcidid><orcidid>https://orcid.org/0000-0002-7842-575X</orcidid><orcidid>https://orcid.org/0000-0001-6354-2278</orcidid><orcidid>https://orcid.org/0000-0002-4402-2194</orcidid></search><sort><creationdate>20171101</creationdate><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</title><author>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-ce1b467b830a8f6719ce35a4d066cd5f650b160d69c32c0ac014fbac27b9b0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimatization - drug effects</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Aldehydes - pharmacology</topic><topic>Arginine - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Caspases - metabolism</topic><topic>Cell Death - drug effects</topic><topic>Diatoms - cytology</topic><topic>Diatoms - drug effects</topic><topic>Diatoms - genetics</topic><topic>Diatoms - metabolism</topic><topic>Ferredoxins - metabolism</topic><topic>Galactolipids - metabolism</topic><topic>Galactosyltransferases - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Life Sciences</topic><topic>Lipid Metabolism - drug effects</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrite Reductases - metabolism</topic><topic>Nitrites - metabolism</topic><topic>Plastids - metabolism</topic><topic>S-Nitroso-N-Acetylpenicillamine - pharmacology</topic><topic>SIGNALING AND RESPONSE</topic><topic>Transcription, Genetic - drug effects</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolch, Lina-Juana</au><au>Lupette, Josselin</au><au>Tourcier, Guillaume</au><au>Bedhomme, Mariette</au><au>Collin, Séverine</au><au>Magneschi, Leonardo</au><au>Conte, Melissa</au><au>Seddiki, Khawla</au><au>Richard, Christelle</au><au>Corre, Erwan</au><au>Fourage, Laurent</au><au>Laeuffer, Frédéric</au><au>Richards, Robert</au><au>Reith, Michael</au><au>Rébeillé, Fabrice</au><au>Jouhet, Juliette</au><au>McGinn, Patrick</au><au>Maréchal, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>175</volume><issue>3</issue><spage>1407</spage><epage>1423</epage><pages>1407-1423</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28924015</pmid><doi>10.1104/pp.17.01042</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0060-1696</orcidid><orcidid>https://orcid.org/0000-0002-8140-4968</orcidid><orcidid>https://orcid.org/0000-0002-0064-4872</orcidid><orcidid>https://orcid.org/0000-0002-7842-575X</orcidid><orcidid>https://orcid.org/0000-0001-6354-2278</orcidid><orcidid>https://orcid.org/0000-0002-4402-2194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2017-11, Vol.175 (3), p.1407-1423 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Acclimatization - drug effects Adaptation, Physiological - drug effects Aldehydes - pharmacology Arginine - metabolism Biochemistry, Molecular Biology Caspases - metabolism Cell Death - drug effects Diatoms - cytology Diatoms - drug effects Diatoms - genetics Diatoms - metabolism Ferredoxins - metabolism Galactolipids - metabolism Galactosyltransferases - metabolism Gene Expression Profiling Gene Expression Regulation, Plant - drug effects Life Sciences Lipid Metabolism - drug effects Nitric Oxide - metabolism Nitrite Reductases - metabolism Nitrites - metabolism Plastids - metabolism S-Nitroso-N-Acetylpenicillamine - pharmacology SIGNALING AND RESPONSE Transcription, Genetic - drug effects Triglycerides - metabolism |
title | Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Mediates%20Nitrite-Sensing%20and%20Acclimation%20and%20Triggers%20a%20Remodeling%20of%20Lipids&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Dolch,%20Lina-Juana&rft.date=2017-11-01&rft.volume=175&rft.issue=3&rft.spage=1407&rft.epage=1423&rft.pages=1407-1423&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.01042&rft_dat=%3Cjstor_pubme%3E26374994%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940594031&rft_id=info:pmid/28924015&rft_jstor_id=26374994&rfr_iscdi=true |