Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1

In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids. Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2017-09, Vol.175 (3), p.1407-1423
Hauptverfasser: Dolch, Lina-Juana, Lupette, Josselin, Tourcier, Guillaume, Bedhomme, Mariette, Collin, Séverine, Magneschi, Leonardo, Conte, Melissa, Seddiki, Khawla, Richard, Christelle, Corre, Erwan, Fourage, Laurent, Laeuffer, Frédéric, Richards, Robert, Reith, Michael, Rébeillé, Fabrice, Jouhet, Juliette, McGinn, Patrick, Maréchal, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1423
container_issue 3
container_start_page 1407
container_title Plant physiology (Bethesda)
container_volume 175
creator Dolch, Lina-Juana
Lupette, Josselin
Tourcier, Guillaume
Bedhomme, Mariette
Collin, Séverine
Magneschi, Leonardo
Conte, Melissa
Seddiki, Khawla
Richard, Christelle
Corre, Erwan
Fourage, Laurent
Laeuffer, Frédéric
Richards, Robert
Reith, Michael
Rébeillé, Fabrice
Jouhet, Juliette
McGinn, Patrick
Maréchal, Eric
description In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids. Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum . NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho enol pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.
doi_str_mv 10.1104/pp.17.01042
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_56644773</originalsourceid><addsrcrecordid>eNqljMtKxDAUhoMoTr2sfIG8QOtJmk47G0FEmYUX0Fm5CbE5U4-0SUii6NtbBzeuXf3ff-Fn7ExAJQSo8xAq0VYwo9xjhWhqWcpGdfusAJgZum61YEcpvQGAqIU6ZAvZraQC0RTs-Z5ypJ4_fJJFfoeWTMbEd2nG8gldIjdw4yy_7PuRJpPJu53fRBoGjIkb_oiTtzj-LP2W31Igm8QJO9iaMeHprx6zi5vrzdW6DO8vE9oeXY5m1CHOp_FLe0P6b-PoVQ_-QzfLpVJtW__74Bswq2BK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creator><creatorcontrib>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creatorcontrib><description>In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids. Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum . NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho enol pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.01042</identifier><identifier>PMID: 28924015</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>Signaling and Response</subject><ispartof>Plant physiology (Bethesda), 2017-09, Vol.175 (3), p.1407-1423</ispartof><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</title><title>Plant physiology (Bethesda)</title><description>In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids. Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum . NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho enol pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><subject>Signaling and Response</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqljMtKxDAUhoMoTr2sfIG8QOtJmk47G0FEmYUX0Fm5CbE5U4-0SUii6NtbBzeuXf3ff-Fn7ExAJQSo8xAq0VYwo9xjhWhqWcpGdfusAJgZum61YEcpvQGAqIU6ZAvZraQC0RTs-Z5ypJ4_fJJFfoeWTMbEd2nG8gldIjdw4yy_7PuRJpPJu53fRBoGjIkb_oiTtzj-LP2W31Igm8QJO9iaMeHprx6zi5vrzdW6DO8vE9oeXY5m1CHOp_FLe0P6b-PoVQ_-QzfLpVJtW__74Bswq2BK</recordid><startdate>20170918</startdate><enddate>20170918</enddate><creator>Dolch, Lina-Juana</creator><creator>Lupette, Josselin</creator><creator>Tourcier, Guillaume</creator><creator>Bedhomme, Mariette</creator><creator>Collin, Séverine</creator><creator>Magneschi, Leonardo</creator><creator>Conte, Melissa</creator><creator>Seddiki, Khawla</creator><creator>Richard, Christelle</creator><creator>Corre, Erwan</creator><creator>Fourage, Laurent</creator><creator>Laeuffer, Frédéric</creator><creator>Richards, Robert</creator><creator>Reith, Michael</creator><creator>Rébeillé, Fabrice</creator><creator>Jouhet, Juliette</creator><creator>McGinn, Patrick</creator><creator>Maréchal, Eric</creator><general>American Society of Plant Biologists</general><scope>5PM</scope></search><sort><creationdate>20170918</creationdate><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</title><author>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_56644773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Signaling and Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolch, Lina-Juana</au><au>Lupette, Josselin</au><au>Tourcier, Guillaume</au><au>Bedhomme, Mariette</au><au>Collin, Séverine</au><au>Magneschi, Leonardo</au><au>Conte, Melissa</au><au>Seddiki, Khawla</au><au>Richard, Christelle</au><au>Corre, Erwan</au><au>Fourage, Laurent</au><au>Laeuffer, Frédéric</au><au>Richards, Robert</au><au>Reith, Michael</au><au>Rébeillé, Fabrice</au><au>Jouhet, Juliette</au><au>McGinn, Patrick</au><au>Maréchal, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2017-09-18</date><risdate>2017</risdate><volume>175</volume><issue>3</issue><spage>1407</spage><epage>1423</epage><pages>1407-1423</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>In Phaedactylum, NO produced from nitrite by the nitrate reductase up-regulates the expression of genes involved in nitrite assimilation into amino acids and triggers a remodeling of lipids. Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum . NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phospho enol pyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</abstract><pub>American Society of Plant Biologists</pub><pmid>28924015</pmid><doi>10.1104/pp.17.01042</doi></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2017-09, Vol.175 (3), p.1407-1423
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Signaling and Response
title Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A05%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Mediates%20Nitrite-Sensing%20and%20Acclimation%20and%20Triggers%20a%20Remodeling%20of%20Lipids1&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Dolch,%20Lina-Juana&rft.date=2017-09-18&rft.volume=175&rft.issue=3&rft.spage=1407&rft.epage=1423&rft.pages=1407-1423&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.01042&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28924015&rfr_iscdi=true