Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids

Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2017-11, Vol.175 (3), p.1407-1423
Hauptverfasser: Dolch, Lina-Juana, Lupette, Josselin, Tourcier, Guillaume, Bedhomme, Mariette, Collin, Séverine, Magneschi, Leonardo, Conte, Melissa, Seddiki, Khawla, Richard, Christelle, Corre, Erwan, Fourage, Laurent, Laeuffer, Frédéric, Richards, Robert, Reith, Michael, Rébeillé, Fabrice, Jouhet, Juliette, McGinn, Patrick, Maréchal, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1423
container_issue 3
container_start_page 1407
container_title Plant physiology (Bethesda)
container_volume 175
creator Dolch, Lina-Juana
Lupette, Josselin
Tourcier, Guillaume
Bedhomme, Mariette
Collin, Séverine
Magneschi, Leonardo
Conte, Melissa
Seddiki, Khawla
Richard, Christelle
Corre, Erwan
Fourage, Laurent
Laeuffer, Frédéric
Richards, Robert
Reith, Michael
Rébeillé, Fabrice
Jouhet, Juliette
McGinn, Patrick
Maréchal, Eric
description Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.
doi_str_mv 10.1104/pp.17.01042
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26374994</jstor_id><sourcerecordid>26374994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-ce1b467b830a8f6719ce35a4d066cd5f650b160d69c32c0ac014fbac27b9b0dd3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhxBmUIwhlmYk_klyQVhVQpIVKUA6cLMeebF1l42BnK_j3eHdL-ThYM5555vVYL2NPEZaIIF5P0xLrJeS0uscWKHlVVlI099kCIOfQNO0Je5TSNQAgR_GQnVRNWwlAuWDfPvk5eltc_PCOio_kvJkpFYfqTOUXGpMfN4UZXbGydvBbM_swHu6X0W82FFNhis-0DY6GPRn6Yu0n79Jj9qA3Q6Int_GUfX339vLsvFxfvP9wtlqXVgKfS0vYCVV3DQfT9KrG1hKXRjhQyjrZKwkdKnCqtbyyYCyg6Dtjq7prO3COn7I3R91p123JWRrnaAY9xbxr_KmD8frfzuiv9CbcaKmUEHWdBV4eBa7-GztfrfW-BpjJVsANZvbF7WMxfN9RmvXWJ0vDYEYKu6QxYzIfvkdfHVEbQ0qR-jttBL03Tk-TxlofjMv0879_ccf-dioDz47AdZpD_NNXvBZtK_gvLB6dZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940594031</pqid></control><display><type>article</type><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creator><creatorcontrib>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</creatorcontrib><description>Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.01042</identifier><identifier>PMID: 28924015</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acclimatization - drug effects ; Adaptation, Physiological - drug effects ; Aldehydes - pharmacology ; Arginine - metabolism ; Biochemistry, Molecular Biology ; Caspases - metabolism ; Cell Death - drug effects ; Diatoms - cytology ; Diatoms - drug effects ; Diatoms - genetics ; Diatoms - metabolism ; Ferredoxins - metabolism ; Galactolipids - metabolism ; Galactosyltransferases - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Plant - drug effects ; Life Sciences ; Lipid Metabolism - drug effects ; Nitric Oxide - metabolism ; Nitrite Reductases - metabolism ; Nitrites - metabolism ; Plastids - metabolism ; S-Nitroso-N-Acetylpenicillamine - pharmacology ; SIGNALING AND RESPONSE ; Transcription, Genetic - drug effects ; Triglycerides - metabolism</subject><ispartof>Plant physiology (Bethesda), 2017-11, Vol.175 (3), p.1407-1423</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-ce1b467b830a8f6719ce35a4d066cd5f650b160d69c32c0ac014fbac27b9b0dd3</citedby><orcidid>0000-0002-0060-1696 ; 0000-0002-8140-4968 ; 0000-0002-0064-4872 ; 0000-0002-7842-575X ; 0000-0001-6354-2278 ; 0000-0002-4402-2194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26374994$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26374994$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28924015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01664940$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</description><subject>Acclimatization - drug effects</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Aldehydes - pharmacology</subject><subject>Arginine - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Caspases - metabolism</subject><subject>Cell Death - drug effects</subject><subject>Diatoms - cytology</subject><subject>Diatoms - drug effects</subject><subject>Diatoms - genetics</subject><subject>Diatoms - metabolism</subject><subject>Ferredoxins - metabolism</subject><subject>Galactolipids - metabolism</subject><subject>Galactosyltransferases - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Life Sciences</subject><subject>Lipid Metabolism - drug effects</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrite Reductases - metabolism</subject><subject>Nitrites - metabolism</subject><subject>Plastids - metabolism</subject><subject>S-Nitroso-N-Acetylpenicillamine - pharmacology</subject><subject>SIGNALING AND RESPONSE</subject><subject>Transcription, Genetic - drug effects</subject><subject>Triglycerides - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhxBmUIwhlmYk_klyQVhVQpIVKUA6cLMeebF1l42BnK_j3eHdL-ThYM5555vVYL2NPEZaIIF5P0xLrJeS0uscWKHlVVlI099kCIOfQNO0Je5TSNQAgR_GQnVRNWwlAuWDfPvk5eltc_PCOio_kvJkpFYfqTOUXGpMfN4UZXbGydvBbM_swHu6X0W82FFNhis-0DY6GPRn6Yu0n79Jj9qA3Q6Int_GUfX339vLsvFxfvP9wtlqXVgKfS0vYCVV3DQfT9KrG1hKXRjhQyjrZKwkdKnCqtbyyYCyg6Dtjq7prO3COn7I3R91p123JWRrnaAY9xbxr_KmD8frfzuiv9CbcaKmUEHWdBV4eBa7-GztfrfW-BpjJVsANZvbF7WMxfN9RmvXWJ0vDYEYKu6QxYzIfvkdfHVEbQ0qR-jttBL03Tk-TxlofjMv0879_ccf-dioDz47AdZpD_NNXvBZtK_gvLB6dZw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Dolch, Lina-Juana</creator><creator>Lupette, Josselin</creator><creator>Tourcier, Guillaume</creator><creator>Bedhomme, Mariette</creator><creator>Collin, Séverine</creator><creator>Magneschi, Leonardo</creator><creator>Conte, Melissa</creator><creator>Seddiki, Khawla</creator><creator>Richard, Christelle</creator><creator>Corre, Erwan</creator><creator>Fourage, Laurent</creator><creator>Laeuffer, Frédéric</creator><creator>Richards, Robert</creator><creator>Reith, Michael</creator><creator>Rébeillé, Fabrice</creator><creator>Jouhet, Juliette</creator><creator>McGinn, Patrick</creator><creator>Maréchal, Eric</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0060-1696</orcidid><orcidid>https://orcid.org/0000-0002-8140-4968</orcidid><orcidid>https://orcid.org/0000-0002-0064-4872</orcidid><orcidid>https://orcid.org/0000-0002-7842-575X</orcidid><orcidid>https://orcid.org/0000-0001-6354-2278</orcidid><orcidid>https://orcid.org/0000-0002-4402-2194</orcidid></search><sort><creationdate>20171101</creationdate><title>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</title><author>Dolch, Lina-Juana ; Lupette, Josselin ; Tourcier, Guillaume ; Bedhomme, Mariette ; Collin, Séverine ; Magneschi, Leonardo ; Conte, Melissa ; Seddiki, Khawla ; Richard, Christelle ; Corre, Erwan ; Fourage, Laurent ; Laeuffer, Frédéric ; Richards, Robert ; Reith, Michael ; Rébeillé, Fabrice ; Jouhet, Juliette ; McGinn, Patrick ; Maréchal, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-ce1b467b830a8f6719ce35a4d066cd5f650b160d69c32c0ac014fbac27b9b0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimatization - drug effects</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Aldehydes - pharmacology</topic><topic>Arginine - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Caspases - metabolism</topic><topic>Cell Death - drug effects</topic><topic>Diatoms - cytology</topic><topic>Diatoms - drug effects</topic><topic>Diatoms - genetics</topic><topic>Diatoms - metabolism</topic><topic>Ferredoxins - metabolism</topic><topic>Galactolipids - metabolism</topic><topic>Galactosyltransferases - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Life Sciences</topic><topic>Lipid Metabolism - drug effects</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrite Reductases - metabolism</topic><topic>Nitrites - metabolism</topic><topic>Plastids - metabolism</topic><topic>S-Nitroso-N-Acetylpenicillamine - pharmacology</topic><topic>SIGNALING AND RESPONSE</topic><topic>Transcription, Genetic - drug effects</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolch, Lina-Juana</creatorcontrib><creatorcontrib>Lupette, Josselin</creatorcontrib><creatorcontrib>Tourcier, Guillaume</creatorcontrib><creatorcontrib>Bedhomme, Mariette</creatorcontrib><creatorcontrib>Collin, Séverine</creatorcontrib><creatorcontrib>Magneschi, Leonardo</creatorcontrib><creatorcontrib>Conte, Melissa</creatorcontrib><creatorcontrib>Seddiki, Khawla</creatorcontrib><creatorcontrib>Richard, Christelle</creatorcontrib><creatorcontrib>Corre, Erwan</creatorcontrib><creatorcontrib>Fourage, Laurent</creatorcontrib><creatorcontrib>Laeuffer, Frédéric</creatorcontrib><creatorcontrib>Richards, Robert</creatorcontrib><creatorcontrib>Reith, Michael</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>McGinn, Patrick</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolch, Lina-Juana</au><au>Lupette, Josselin</au><au>Tourcier, Guillaume</au><au>Bedhomme, Mariette</au><au>Collin, Séverine</au><au>Magneschi, Leonardo</au><au>Conte, Melissa</au><au>Seddiki, Khawla</au><au>Richard, Christelle</au><au>Corre, Erwan</au><au>Fourage, Laurent</au><au>Laeuffer, Frédéric</au><au>Richards, Robert</au><au>Reith, Michael</au><au>Rébeillé, Fabrice</au><au>Jouhet, Juliette</au><au>McGinn, Patrick</au><au>Maréchal, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>175</volume><issue>3</issue><spage>1407</spage><epage>1423</epage><pages>1407-1423</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant, and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death in response to diatom-derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a nonspecific cell toxicity. We reexamined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from Arg but via conversion of nitrite by the nitrate reductase. Genome-wide transcriptional analysis shows that NO up-regulates the expression of the plastid nitrite reductase and genes involved in the subsequent incorporation of ammonium into amino acids, via both Gln synthesis and Orn-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also up-regulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol (MGDG) in the plastid via posttranslational inhibition of MGDG synthase enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28924015</pmid><doi>10.1104/pp.17.01042</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0060-1696</orcidid><orcidid>https://orcid.org/0000-0002-8140-4968</orcidid><orcidid>https://orcid.org/0000-0002-0064-4872</orcidid><orcidid>https://orcid.org/0000-0002-7842-575X</orcidid><orcidid>https://orcid.org/0000-0001-6354-2278</orcidid><orcidid>https://orcid.org/0000-0002-4402-2194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2017-11, Vol.175 (3), p.1407-1423
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5664477
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Acclimatization - drug effects
Adaptation, Physiological - drug effects
Aldehydes - pharmacology
Arginine - metabolism
Biochemistry, Molecular Biology
Caspases - metabolism
Cell Death - drug effects
Diatoms - cytology
Diatoms - drug effects
Diatoms - genetics
Diatoms - metabolism
Ferredoxins - metabolism
Galactolipids - metabolism
Galactosyltransferases - metabolism
Gene Expression Profiling
Gene Expression Regulation, Plant - drug effects
Life Sciences
Lipid Metabolism - drug effects
Nitric Oxide - metabolism
Nitrite Reductases - metabolism
Nitrites - metabolism
Plastids - metabolism
S-Nitroso-N-Acetylpenicillamine - pharmacology
SIGNALING AND RESPONSE
Transcription, Genetic - drug effects
Triglycerides - metabolism
title Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Mediates%20Nitrite-Sensing%20and%20Acclimation%20and%20Triggers%20a%20Remodeling%20of%20Lipids&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Dolch,%20Lina-Juana&rft.date=2017-11-01&rft.volume=175&rft.issue=3&rft.spage=1407&rft.epage=1423&rft.pages=1407-1423&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.01042&rft_dat=%3Cjstor_pubme%3E26374994%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940594031&rft_id=info:pmid/28924015&rft_jstor_id=26374994&rfr_iscdi=true