Prediction of delayed graft function using different scoring algorithms: A single-center experience

To compare the performance of 3 published delayed graft function (DGF) calculators that compute the theoretical risk of DGF for each patient. This single-center, retrospective study included 247 consecutive kidney transplants from a deceased donor. These kidney transplantations were performed at our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of transplantation 2017-10, Vol.7 (5), p.260-268
Hauptverfasser: Michalak, Magda, Wouters, Kristien, Fransen, Erik, Hellemans, Rachel, Van Craenenbroeck, Amaryllis H, Couttenye, Marie M, Bracke, Bart, Ysebaert, Dirk K, Hartman, Vera, De Greef, Kathleen, Chapelle, Thiery, Roeyen, Geert, Van Beeumen, Gerda, Emonds, Marie-Paule, Abramowicz, Daniel, Bosmans, Jean-Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 5
container_start_page 260
container_title World journal of transplantation
container_volume 7
creator Michalak, Magda
Wouters, Kristien
Fransen, Erik
Hellemans, Rachel
Van Craenenbroeck, Amaryllis H
Couttenye, Marie M
Bracke, Bart
Ysebaert, Dirk K
Hartman, Vera
De Greef, Kathleen
Chapelle, Thiery
Roeyen, Geert
Van Beeumen, Gerda
Emonds, Marie-Paule
Abramowicz, Daniel
Bosmans, Jean-Louis
description To compare the performance of 3 published delayed graft function (DGF) calculators that compute the theoretical risk of DGF for each patient. This single-center, retrospective study included 247 consecutive kidney transplants from a deceased donor. These kidney transplantations were performed at our institution between January 2003 and December 2012. We compared the occurrence of observed DGF in our cohort with the predicted DGF according to three different published calculators. The accuracy of the calculators was evaluated by means of the c-index (receiver operating characteristic curve). DGF occurred in 15.3% of the transplants under study. The c index of the Irish calculator provided an area under the curve (AUC) of 0.69 indicating an acceptable level of prediction, in contrast to the poor performance of the Jeldres nomogram (AUC = 0.54) and the Chapal nomogram (AUC = 0.51). With the Irish algorithm the predicted DGF risk and the observed DGF probabilities were close. The mean calculated DGF risk was significantly different between DGF-positive and DGF-negative subjects ( < 0.0001). However, at the level of the individual patient the calculated risk of DGF overlapped very widely with ranges from 10% to 51% for recipients with DGF and from 4% to 56% for those without DGF. The sensitivity, specificity and positive predictive value of a calculated DGF risk ≥ 30% with the Irish nomogram were 32%, 91% and 38%. Predictive models for DGF after kidney transplantation are performant in the population in which they were derived, but less so in external validations.
doi_str_mv 10.5500/wjt.v7.i5.260
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5661123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961035393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2320-37550ae590b4be4792bdf470509653f71e8a3b72e201daefc16f61f60591b29e3</originalsourceid><addsrcrecordid>eNpVkc1LAzEQxYMoWrRHr5Kjl62TpMk2HgQRv6CgBz2HbHbSRra7Ndmt-t-7S6voaYaZH2_e8Ag5ZTCREuDi462dbPJJkBOuYI-MOOeQCS5g_09_RMYpvQEAA8mB60NyxDWD6UzBiLjniGVwbWhq2nhaYmW_sKSLaH1LfVdvN10K9YKWwXuMWLc0uSYOE1st-qZdrtIlvaYDVGHmegIjxc81xoC1wxNy4G2VcLyrx-T17vbl5iGbP90_3lzPM8fF4DXvf7IoNRTTAqe55kXppzlI0EoKnzOcWVHkHDmw0qJ3THnFvAKpWcE1imNytdVdd8UKy8FHtJVZx7Cy8cs0Npj_mzoszaLZGKkUY1z0Auc7gdi8d5haswrJYVXZGpsuGaYVAyGFHtBsi7rYpBTR_55hYIZsTJ-N2eQmSNNn0_Nnf7390j9JiG_Ci40Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961035393</pqid></control><display><type>article</type><title>Prediction of delayed graft function using different scoring algorithms: A single-center experience</title><source>Baishideng "World Journal of" online journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Michalak, Magda ; Wouters, Kristien ; Fransen, Erik ; Hellemans, Rachel ; Van Craenenbroeck, Amaryllis H ; Couttenye, Marie M ; Bracke, Bart ; Ysebaert, Dirk K ; Hartman, Vera ; De Greef, Kathleen ; Chapelle, Thiery ; Roeyen, Geert ; Van Beeumen, Gerda ; Emonds, Marie-Paule ; Abramowicz, Daniel ; Bosmans, Jean-Louis</creator><creatorcontrib>Michalak, Magda ; Wouters, Kristien ; Fransen, Erik ; Hellemans, Rachel ; Van Craenenbroeck, Amaryllis H ; Couttenye, Marie M ; Bracke, Bart ; Ysebaert, Dirk K ; Hartman, Vera ; De Greef, Kathleen ; Chapelle, Thiery ; Roeyen, Geert ; Van Beeumen, Gerda ; Emonds, Marie-Paule ; Abramowicz, Daniel ; Bosmans, Jean-Louis</creatorcontrib><description>To compare the performance of 3 published delayed graft function (DGF) calculators that compute the theoretical risk of DGF for each patient. This single-center, retrospective study included 247 consecutive kidney transplants from a deceased donor. These kidney transplantations were performed at our institution between January 2003 and December 2012. We compared the occurrence of observed DGF in our cohort with the predicted DGF according to three different published calculators. The accuracy of the calculators was evaluated by means of the c-index (receiver operating characteristic curve). DGF occurred in 15.3% of the transplants under study. The c index of the Irish calculator provided an area under the curve (AUC) of 0.69 indicating an acceptable level of prediction, in contrast to the poor performance of the Jeldres nomogram (AUC = 0.54) and the Chapal nomogram (AUC = 0.51). With the Irish algorithm the predicted DGF risk and the observed DGF probabilities were close. The mean calculated DGF risk was significantly different between DGF-positive and DGF-negative subjects ( &lt; 0.0001). However, at the level of the individual patient the calculated risk of DGF overlapped very widely with ranges from 10% to 51% for recipients with DGF and from 4% to 56% for those without DGF. The sensitivity, specificity and positive predictive value of a calculated DGF risk ≥ 30% with the Irish nomogram were 32%, 91% and 38%. Predictive models for DGF after kidney transplantation are performant in the population in which they were derived, but less so in external validations.</description><identifier>ISSN: 2220-3230</identifier><identifier>EISSN: 2220-3230</identifier><identifier>DOI: 10.5500/wjt.v7.i5.260</identifier><identifier>PMID: 29104860</identifier><language>eng</language><publisher>United States: Baishideng Publishing Group Inc</publisher><subject>Retrospective Cohort Study</subject><ispartof>World journal of transplantation, 2017-10, Vol.7 (5), p.260-268</ispartof><rights>The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2320-37550ae590b4be4792bdf470509653f71e8a3b72e201daefc16f61f60591b29e3</citedby><cites>FETCH-LOGICAL-c2320-37550ae590b4be4792bdf470509653f71e8a3b72e201daefc16f61f60591b29e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29104860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalak, Magda</creatorcontrib><creatorcontrib>Wouters, Kristien</creatorcontrib><creatorcontrib>Fransen, Erik</creatorcontrib><creatorcontrib>Hellemans, Rachel</creatorcontrib><creatorcontrib>Van Craenenbroeck, Amaryllis H</creatorcontrib><creatorcontrib>Couttenye, Marie M</creatorcontrib><creatorcontrib>Bracke, Bart</creatorcontrib><creatorcontrib>Ysebaert, Dirk K</creatorcontrib><creatorcontrib>Hartman, Vera</creatorcontrib><creatorcontrib>De Greef, Kathleen</creatorcontrib><creatorcontrib>Chapelle, Thiery</creatorcontrib><creatorcontrib>Roeyen, Geert</creatorcontrib><creatorcontrib>Van Beeumen, Gerda</creatorcontrib><creatorcontrib>Emonds, Marie-Paule</creatorcontrib><creatorcontrib>Abramowicz, Daniel</creatorcontrib><creatorcontrib>Bosmans, Jean-Louis</creatorcontrib><title>Prediction of delayed graft function using different scoring algorithms: A single-center experience</title><title>World journal of transplantation</title><addtitle>World J Transplant</addtitle><description>To compare the performance of 3 published delayed graft function (DGF) calculators that compute the theoretical risk of DGF for each patient. This single-center, retrospective study included 247 consecutive kidney transplants from a deceased donor. These kidney transplantations were performed at our institution between January 2003 and December 2012. We compared the occurrence of observed DGF in our cohort with the predicted DGF according to three different published calculators. The accuracy of the calculators was evaluated by means of the c-index (receiver operating characteristic curve). DGF occurred in 15.3% of the transplants under study. The c index of the Irish calculator provided an area under the curve (AUC) of 0.69 indicating an acceptable level of prediction, in contrast to the poor performance of the Jeldres nomogram (AUC = 0.54) and the Chapal nomogram (AUC = 0.51). With the Irish algorithm the predicted DGF risk and the observed DGF probabilities were close. The mean calculated DGF risk was significantly different between DGF-positive and DGF-negative subjects ( &lt; 0.0001). However, at the level of the individual patient the calculated risk of DGF overlapped very widely with ranges from 10% to 51% for recipients with DGF and from 4% to 56% for those without DGF. The sensitivity, specificity and positive predictive value of a calculated DGF risk ≥ 30% with the Irish nomogram were 32%, 91% and 38%. Predictive models for DGF after kidney transplantation are performant in the population in which they were derived, but less so in external validations.</description><subject>Retrospective Cohort Study</subject><issn>2220-3230</issn><issn>2220-3230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LAzEQxYMoWrRHr5Kjl62TpMk2HgQRv6CgBz2HbHbSRra7Ndmt-t-7S6voaYaZH2_e8Ag5ZTCREuDi462dbPJJkBOuYI-MOOeQCS5g_09_RMYpvQEAA8mB60NyxDWD6UzBiLjniGVwbWhq2nhaYmW_sKSLaH1LfVdvN10K9YKWwXuMWLc0uSYOE1st-qZdrtIlvaYDVGHmegIjxc81xoC1wxNy4G2VcLyrx-T17vbl5iGbP90_3lzPM8fF4DXvf7IoNRTTAqe55kXppzlI0EoKnzOcWVHkHDmw0qJ3THnFvAKpWcE1imNytdVdd8UKy8FHtJVZx7Cy8cs0Npj_mzoszaLZGKkUY1z0Auc7gdi8d5haswrJYVXZGpsuGaYVAyGFHtBsi7rYpBTR_55hYIZsTJ-N2eQmSNNn0_Nnf7390j9JiG_Ci40Y</recordid><startdate>20171024</startdate><enddate>20171024</enddate><creator>Michalak, Magda</creator><creator>Wouters, Kristien</creator><creator>Fransen, Erik</creator><creator>Hellemans, Rachel</creator><creator>Van Craenenbroeck, Amaryllis H</creator><creator>Couttenye, Marie M</creator><creator>Bracke, Bart</creator><creator>Ysebaert, Dirk K</creator><creator>Hartman, Vera</creator><creator>De Greef, Kathleen</creator><creator>Chapelle, Thiery</creator><creator>Roeyen, Geert</creator><creator>Van Beeumen, Gerda</creator><creator>Emonds, Marie-Paule</creator><creator>Abramowicz, Daniel</creator><creator>Bosmans, Jean-Louis</creator><general>Baishideng Publishing Group Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171024</creationdate><title>Prediction of delayed graft function using different scoring algorithms: A single-center experience</title><author>Michalak, Magda ; Wouters, Kristien ; Fransen, Erik ; Hellemans, Rachel ; Van Craenenbroeck, Amaryllis H ; Couttenye, Marie M ; Bracke, Bart ; Ysebaert, Dirk K ; Hartman, Vera ; De Greef, Kathleen ; Chapelle, Thiery ; Roeyen, Geert ; Van Beeumen, Gerda ; Emonds, Marie-Paule ; Abramowicz, Daniel ; Bosmans, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2320-37550ae590b4be4792bdf470509653f71e8a3b72e201daefc16f61f60591b29e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Retrospective Cohort Study</topic><toplevel>online_resources</toplevel><creatorcontrib>Michalak, Magda</creatorcontrib><creatorcontrib>Wouters, Kristien</creatorcontrib><creatorcontrib>Fransen, Erik</creatorcontrib><creatorcontrib>Hellemans, Rachel</creatorcontrib><creatorcontrib>Van Craenenbroeck, Amaryllis H</creatorcontrib><creatorcontrib>Couttenye, Marie M</creatorcontrib><creatorcontrib>Bracke, Bart</creatorcontrib><creatorcontrib>Ysebaert, Dirk K</creatorcontrib><creatorcontrib>Hartman, Vera</creatorcontrib><creatorcontrib>De Greef, Kathleen</creatorcontrib><creatorcontrib>Chapelle, Thiery</creatorcontrib><creatorcontrib>Roeyen, Geert</creatorcontrib><creatorcontrib>Van Beeumen, Gerda</creatorcontrib><creatorcontrib>Emonds, Marie-Paule</creatorcontrib><creatorcontrib>Abramowicz, Daniel</creatorcontrib><creatorcontrib>Bosmans, Jean-Louis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of transplantation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalak, Magda</au><au>Wouters, Kristien</au><au>Fransen, Erik</au><au>Hellemans, Rachel</au><au>Van Craenenbroeck, Amaryllis H</au><au>Couttenye, Marie M</au><au>Bracke, Bart</au><au>Ysebaert, Dirk K</au><au>Hartman, Vera</au><au>De Greef, Kathleen</au><au>Chapelle, Thiery</au><au>Roeyen, Geert</au><au>Van Beeumen, Gerda</au><au>Emonds, Marie-Paule</au><au>Abramowicz, Daniel</au><au>Bosmans, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of delayed graft function using different scoring algorithms: A single-center experience</atitle><jtitle>World journal of transplantation</jtitle><addtitle>World J Transplant</addtitle><date>2017-10-24</date><risdate>2017</risdate><volume>7</volume><issue>5</issue><spage>260</spage><epage>268</epage><pages>260-268</pages><issn>2220-3230</issn><eissn>2220-3230</eissn><abstract>To compare the performance of 3 published delayed graft function (DGF) calculators that compute the theoretical risk of DGF for each patient. This single-center, retrospective study included 247 consecutive kidney transplants from a deceased donor. These kidney transplantations were performed at our institution between January 2003 and December 2012. We compared the occurrence of observed DGF in our cohort with the predicted DGF according to three different published calculators. The accuracy of the calculators was evaluated by means of the c-index (receiver operating characteristic curve). DGF occurred in 15.3% of the transplants under study. The c index of the Irish calculator provided an area under the curve (AUC) of 0.69 indicating an acceptable level of prediction, in contrast to the poor performance of the Jeldres nomogram (AUC = 0.54) and the Chapal nomogram (AUC = 0.51). With the Irish algorithm the predicted DGF risk and the observed DGF probabilities were close. The mean calculated DGF risk was significantly different between DGF-positive and DGF-negative subjects ( &lt; 0.0001). However, at the level of the individual patient the calculated risk of DGF overlapped very widely with ranges from 10% to 51% for recipients with DGF and from 4% to 56% for those without DGF. The sensitivity, specificity and positive predictive value of a calculated DGF risk ≥ 30% with the Irish nomogram were 32%, 91% and 38%. Predictive models for DGF after kidney transplantation are performant in the population in which they were derived, but less so in external validations.</abstract><cop>United States</cop><pub>Baishideng Publishing Group Inc</pub><pmid>29104860</pmid><doi>10.5500/wjt.v7.i5.260</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-3230
ispartof World journal of transplantation, 2017-10, Vol.7 (5), p.260-268
issn 2220-3230
2220-3230
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5661123
source Baishideng "World Journal of" online journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Retrospective Cohort Study
title Prediction of delayed graft function using different scoring algorithms: A single-center experience
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20delayed%20graft%20function%20using%20different%20scoring%20algorithms:%20A%20single-center%20experience&rft.jtitle=World%20journal%20of%20transplantation&rft.au=Michalak,%20Magda&rft.date=2017-10-24&rft.volume=7&rft.issue=5&rft.spage=260&rft.epage=268&rft.pages=260-268&rft.issn=2220-3230&rft.eissn=2220-3230&rft_id=info:doi/10.5500/wjt.v7.i5.260&rft_dat=%3Cproquest_pubme%3E1961035393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961035393&rft_id=info:pmid/29104860&rfr_iscdi=true