Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering
We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering...
Gespeichert in:
Veröffentlicht in: | Journal of healthcare engineering 2017-01, Vol.2017 (2017), p.1-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Journal of healthcare engineering |
container_volume | 2017 |
creator | Ramos Díaz, Eduardo Mújica Vargas, Dante Gallegos, F. J. Rosales Silva, Alberto Jorge Vianney Kinani, Jean Marie Arellano, Alfonso |
description | We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time. |
doi_str_mv | 10.1155/2017/8536206 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550167495</galeid><sourcerecordid>A550167495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</originalsourceid><addsrcrecordid>eNqNkUtP3DAUha2qqKCBXddVpG4qwRRfv72pBMOjSIPooqwtx4_BVSahcQKCX4-jGWi7qzc-uvfz0b0-CH0E_BWA82OCQR4rTgXB4h3aI5jhOaFYv3_VRPNddJDzL1wO1ZQB_YB2iQaulJJ76Md18MnZprpa21VqV9Uy5NS11VkYghsmdWpz8FURt22KqcjL3j6kwU7N8u5ifH5-qhbNmIfQF4N9tBNtk8PB9p6h24vzn4vv8-XN5dXiZDl3TMIwj55y7aWiinoheMTa1YrVQDX3vgYdhePAbORSWhJZHbkgXEsWvMPMAacz9G3jez_W61IN7dDbxtz3aW37J9PZZP7ttOnOrLoHw4XACmQx-LI16LvfY8iDWafsQtPYNnRjNqCF0FpD-bEZ-rxBV7YJJrWxK45uws0J5xiEZHqa6GhDub7LuQ_xbRjAZkrLTGmZbVoF__T3Am_wazYFONwAd6n19jH9p10oTIj2Dw0KCBf0BbhipY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966999141</pqid></control><display><type>article</type><title>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ramos Díaz, Eduardo ; Mújica Vargas, Dante ; Gallegos, F. J. ; Rosales Silva, Alberto Jorge ; Vianney Kinani, Jean Marie ; Arellano, Alfonso</creator><contributor>Fu, Shujun</contributor><creatorcontrib>Ramos Díaz, Eduardo ; Mújica Vargas, Dante ; Gallegos, F. J. ; Rosales Silva, Alberto Jorge ; Vianney Kinani, Jean Marie ; Arellano, Alfonso ; Fu, Shujun</creatorcontrib><description>We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2017/8536206</identifier><identifier>PMID: 29158887</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain damage ; Brain Neoplasms - diagnostic imaging ; Cluster Analysis ; Databases, Factual ; Fuzzy Logic ; Gravitation ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Medical imaging equipment ; Neuroimaging - methods ; Normal Distribution ; Radiosurgery ; Radiotherapy ; Radiotherapy Planning, Computer-Assisted - methods</subject><ispartof>Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-14</ispartof><rights>Copyright © 2017 Jean Marie Vianney Kinani et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Jean Marie Vianney Kinani et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</citedby><cites>FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</cites><orcidid>0000-0001-8436-3025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fu, Shujun</contributor><creatorcontrib>Ramos Díaz, Eduardo</creatorcontrib><creatorcontrib>Mújica Vargas, Dante</creatorcontrib><creatorcontrib>Gallegos, F. J.</creatorcontrib><creatorcontrib>Rosales Silva, Alberto Jorge</creatorcontrib><creatorcontrib>Vianney Kinani, Jean Marie</creatorcontrib><creatorcontrib>Arellano, Alfonso</creatorcontrib><title>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain damage</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Cluster Analysis</subject><subject>Databases, Factual</subject><subject>Fuzzy Logic</subject><subject>Gravitation</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Medical imaging equipment</subject><subject>Neuroimaging - methods</subject><subject>Normal Distribution</subject><subject>Radiosurgery</subject><subject>Radiotherapy</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtP3DAUha2qqKCBXddVpG4qwRRfv72pBMOjSIPooqwtx4_BVSahcQKCX4-jGWi7qzc-uvfz0b0-CH0E_BWA82OCQR4rTgXB4h3aI5jhOaFYv3_VRPNddJDzL1wO1ZQB_YB2iQaulJJ76Md18MnZprpa21VqV9Uy5NS11VkYghsmdWpz8FURt22KqcjL3j6kwU7N8u5ifH5-qhbNmIfQF4N9tBNtk8PB9p6h24vzn4vv8-XN5dXiZDl3TMIwj55y7aWiinoheMTa1YrVQDX3vgYdhePAbORSWhJZHbkgXEsWvMPMAacz9G3jez_W61IN7dDbxtz3aW37J9PZZP7ttOnOrLoHw4XACmQx-LI16LvfY8iDWafsQtPYNnRjNqCF0FpD-bEZ-rxBV7YJJrWxK45uws0J5xiEZHqa6GhDub7LuQ_xbRjAZkrLTGmZbVoF__T3Am_wazYFONwAd6n19jH9p10oTIj2Dw0KCBf0BbhipY8</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ramos Díaz, Eduardo</creator><creator>Mújica Vargas, Dante</creator><creator>Gallegos, F. J.</creator><creator>Rosales Silva, Alberto Jorge</creator><creator>Vianney Kinani, Jean Marie</creator><creator>Arellano, Alfonso</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8436-3025</orcidid></search><sort><creationdate>20170101</creationdate><title>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</title><author>Ramos Díaz, Eduardo ; Mújica Vargas, Dante ; Gallegos, F. J. ; Rosales Silva, Alberto Jorge ; Vianney Kinani, Jean Marie ; Arellano, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain damage</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Cluster Analysis</topic><topic>Databases, Factual</topic><topic>Fuzzy Logic</topic><topic>Gravitation</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Medical imaging equipment</topic><topic>Neuroimaging - methods</topic><topic>Normal Distribution</topic><topic>Radiosurgery</topic><topic>Radiotherapy</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Díaz, Eduardo</creatorcontrib><creatorcontrib>Mújica Vargas, Dante</creatorcontrib><creatorcontrib>Gallegos, F. J.</creatorcontrib><creatorcontrib>Rosales Silva, Alberto Jorge</creatorcontrib><creatorcontrib>Vianney Kinani, Jean Marie</creatorcontrib><creatorcontrib>Arellano, Alfonso</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Díaz, Eduardo</au><au>Mújica Vargas, Dante</au><au>Gallegos, F. J.</au><au>Rosales Silva, Alberto Jorge</au><au>Vianney Kinani, Jean Marie</au><au>Arellano, Alfonso</au><au>Fu, Shujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29158887</pmid><doi>10.1155/2017/8536206</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8436-3025</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-2295 |
ispartof | Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-14 |
issn | 2040-2295 2040-2309 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660817 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Brain - diagnostic imaging Brain damage Brain Neoplasms - diagnostic imaging Cluster Analysis Databases, Factual Fuzzy Logic Gravitation Humans Image Interpretation, Computer-Assisted Image Processing, Computer-Assisted Medical imaging equipment Neuroimaging - methods Normal Distribution Radiosurgery Radiotherapy Radiotherapy Planning, Computer-Assisted - methods |
title | Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20Imaging%20Lesion%20Detection%20Based%20on%20Unified%20Gravitational%20Fuzzy%20Clustering&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Ramos%20D%C3%ADaz,%20Eduardo&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2017/8536206&rft_dat=%3Cgale_pubme%3EA550167495%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966999141&rft_id=info:pmid/29158887&rft_galeid=A550167495&rfr_iscdi=true |