Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2017-01, Vol.2017 (2017), p.1-14
Hauptverfasser: Ramos Díaz, Eduardo, Mújica Vargas, Dante, Gallegos, F. J., Rosales Silva, Alberto Jorge, Vianney Kinani, Jean Marie, Arellano, Alfonso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2017
container_start_page 1
container_title Journal of healthcare engineering
container_volume 2017
creator Ramos Díaz, Eduardo
Mújica Vargas, Dante
Gallegos, F. J.
Rosales Silva, Alberto Jorge
Vianney Kinani, Jean Marie
Arellano, Alfonso
description We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.
doi_str_mv 10.1155/2017/8536206
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550167495</galeid><sourcerecordid>A550167495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</originalsourceid><addsrcrecordid>eNqNkUtP3DAUha2qqKCBXddVpG4qwRRfv72pBMOjSIPooqwtx4_BVSahcQKCX4-jGWi7qzc-uvfz0b0-CH0E_BWA82OCQR4rTgXB4h3aI5jhOaFYv3_VRPNddJDzL1wO1ZQB_YB2iQaulJJ76Md18MnZprpa21VqV9Uy5NS11VkYghsmdWpz8FURt22KqcjL3j6kwU7N8u5ifH5-qhbNmIfQF4N9tBNtk8PB9p6h24vzn4vv8-XN5dXiZDl3TMIwj55y7aWiinoheMTa1YrVQDX3vgYdhePAbORSWhJZHbkgXEsWvMPMAacz9G3jez_W61IN7dDbxtz3aW37J9PZZP7ttOnOrLoHw4XACmQx-LI16LvfY8iDWafsQtPYNnRjNqCF0FpD-bEZ-rxBV7YJJrWxK45uws0J5xiEZHqa6GhDub7LuQ_xbRjAZkrLTGmZbVoF__T3Am_wazYFONwAd6n19jH9p10oTIj2Dw0KCBf0BbhipY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966999141</pqid></control><display><type>article</type><title>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ramos Díaz, Eduardo ; Mújica Vargas, Dante ; Gallegos, F. J. ; Rosales Silva, Alberto Jorge ; Vianney Kinani, Jean Marie ; Arellano, Alfonso</creator><contributor>Fu, Shujun</contributor><creatorcontrib>Ramos Díaz, Eduardo ; Mújica Vargas, Dante ; Gallegos, F. J. ; Rosales Silva, Alberto Jorge ; Vianney Kinani, Jean Marie ; Arellano, Alfonso ; Fu, Shujun</creatorcontrib><description>We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2017/8536206</identifier><identifier>PMID: 29158887</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain damage ; Brain Neoplasms - diagnostic imaging ; Cluster Analysis ; Databases, Factual ; Fuzzy Logic ; Gravitation ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Medical imaging equipment ; Neuroimaging - methods ; Normal Distribution ; Radiosurgery ; Radiotherapy ; Radiotherapy Planning, Computer-Assisted - methods</subject><ispartof>Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-14</ispartof><rights>Copyright © 2017 Jean Marie Vianney Kinani et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Jean Marie Vianney Kinani et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</citedby><cites>FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</cites><orcidid>0000-0001-8436-3025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29158887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fu, Shujun</contributor><creatorcontrib>Ramos Díaz, Eduardo</creatorcontrib><creatorcontrib>Mújica Vargas, Dante</creatorcontrib><creatorcontrib>Gallegos, F. J.</creatorcontrib><creatorcontrib>Rosales Silva, Alberto Jorge</creatorcontrib><creatorcontrib>Vianney Kinani, Jean Marie</creatorcontrib><creatorcontrib>Arellano, Alfonso</creatorcontrib><title>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain damage</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Cluster Analysis</subject><subject>Databases, Factual</subject><subject>Fuzzy Logic</subject><subject>Gravitation</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Medical imaging equipment</subject><subject>Neuroimaging - methods</subject><subject>Normal Distribution</subject><subject>Radiosurgery</subject><subject>Radiotherapy</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtP3DAUha2qqKCBXddVpG4qwRRfv72pBMOjSIPooqwtx4_BVSahcQKCX4-jGWi7qzc-uvfz0b0-CH0E_BWA82OCQR4rTgXB4h3aI5jhOaFYv3_VRPNddJDzL1wO1ZQB_YB2iQaulJJ76Md18MnZprpa21VqV9Uy5NS11VkYghsmdWpz8FURt22KqcjL3j6kwU7N8u5ifH5-qhbNmIfQF4N9tBNtk8PB9p6h24vzn4vv8-XN5dXiZDl3TMIwj55y7aWiinoheMTa1YrVQDX3vgYdhePAbORSWhJZHbkgXEsWvMPMAacz9G3jez_W61IN7dDbxtz3aW37J9PZZP7ttOnOrLoHw4XACmQx-LI16LvfY8iDWafsQtPYNnRjNqCF0FpD-bEZ-rxBV7YJJrWxK45uws0J5xiEZHqa6GhDub7LuQ_xbRjAZkrLTGmZbVoF__T3Am_wazYFONwAd6n19jH9p10oTIj2Dw0KCBf0BbhipY8</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ramos Díaz, Eduardo</creator><creator>Mújica Vargas, Dante</creator><creator>Gallegos, F. J.</creator><creator>Rosales Silva, Alberto Jorge</creator><creator>Vianney Kinani, Jean Marie</creator><creator>Arellano, Alfonso</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8436-3025</orcidid></search><sort><creationdate>20170101</creationdate><title>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</title><author>Ramos Díaz, Eduardo ; Mújica Vargas, Dante ; Gallegos, F. J. ; Rosales Silva, Alberto Jorge ; Vianney Kinani, Jean Marie ; Arellano, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-fd359d78383d665f09cb84b1395ddb19f6c514af577a2f4bf5625974edc04c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain damage</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Cluster Analysis</topic><topic>Databases, Factual</topic><topic>Fuzzy Logic</topic><topic>Gravitation</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Medical imaging equipment</topic><topic>Neuroimaging - methods</topic><topic>Normal Distribution</topic><topic>Radiosurgery</topic><topic>Radiotherapy</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Díaz, Eduardo</creatorcontrib><creatorcontrib>Mújica Vargas, Dante</creatorcontrib><creatorcontrib>Gallegos, F. J.</creatorcontrib><creatorcontrib>Rosales Silva, Alberto Jorge</creatorcontrib><creatorcontrib>Vianney Kinani, Jean Marie</creatorcontrib><creatorcontrib>Arellano, Alfonso</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Díaz, Eduardo</au><au>Mújica Vargas, Dante</au><au>Gallegos, F. J.</au><au>Rosales Silva, Alberto Jorge</au><au>Vianney Kinani, Jean Marie</au><au>Arellano, Alfonso</au><au>Fu, Shujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29158887</pmid><doi>10.1155/2017/8536206</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8436-3025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2295
ispartof Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-14
issn 2040-2295
2040-2309
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660817
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Brain - diagnostic imaging
Brain damage
Brain Neoplasms - diagnostic imaging
Cluster Analysis
Databases, Factual
Fuzzy Logic
Gravitation
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Medical imaging equipment
Neuroimaging - methods
Normal Distribution
Radiosurgery
Radiotherapy
Radiotherapy Planning, Computer-Assisted - methods
title Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20Imaging%20Lesion%20Detection%20Based%20on%20Unified%20Gravitational%20Fuzzy%20Clustering&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Ramos%20D%C3%ADaz,%20Eduardo&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2017/8536206&rft_dat=%3Cgale_pubme%3EA550167495%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966999141&rft_id=info:pmid/29158887&rft_galeid=A550167495&rfr_iscdi=true