In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites
The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-10, Vol.7 (1), p.14261-10, Article 14261 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 14261 |
container_title | Scientific reports |
container_volume | 7 |
creator | Yu, Dong Tan, Yanning Sun, Zhizhong Sun, Xuewu Sheng, Xiabing Zhou, Tianshun Liu, Ling Mo, Yi Jiang, Beibei Ouyang, Ning Yin, Xiaolin Duan, Meijuan Yuan, Dingyang |
description | The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an
in vitro
Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance. |
doi_str_mv | 10.1038/s41598-017-14496-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957490181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</originalsourceid><addsrcrecordid>eNp1kU9vEzEQxVcIRKvSL8ABWeLCZan_rb2-IIVSIFILEgGulteZDS5eO7V3g8Knx2lKlSLhi0ea3xvP86uq5wS_Jpi1Z5mTRrU1JrImnCtRN4-qY4p5U1NG6eOD-qg6zfkal9NQxYl6Wh1RhaWSLT-ufs0D-u7GFNECzOAhZ7QYjf2JLsLv7WBGZ9EsZxg6v0WxR-8-zdBV9GCngqK3JsMSxYBMESUzwmqL5mET_caFFVqsvbO7oui-QB6Ts6Mr8MKNkJ9VT3rjM5ze3SfVt_cXX88_1pefP8zPZ5e15ZKPNQXLLQjMGRfW2Ia3XDFBFOCuZ8J0VKm2waYTgrJO2qUs_rolwUr2AlT5qJPqzX7ueuoGWFoIZVGv18kNJm11NE4_7AT3Q6_iRjdCYNLKMuDV3YAUb6ZiQw8uW_DeBIhT1kQ1kquCkoK-_Ae9jlMKxd6OErzFTLFC0T1lU8w5QX-_DMF6F63eR6tLtPo2Wt0U0YtDG_eSv0EWgO2BXFphBeng7f-P_QMhDK9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956480393</pqid></control><display><type>article</type><title>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Dong ; Tan, Yanning ; Sun, Zhizhong ; Sun, Xuewu ; Sheng, Xiabing ; Zhou, Tianshun ; Liu, Ling ; Mo, Yi ; Jiang, Beibei ; Ouyang, Ning ; Yin, Xiaolin ; Duan, Meijuan ; Yuan, Dingyang</creator><creatorcontrib>Yu, Dong ; Tan, Yanning ; Sun, Zhizhong ; Sun, Xuewu ; Sheng, Xiabing ; Zhou, Tianshun ; Liu, Ling ; Mo, Yi ; Jiang, Beibei ; Ouyang, Ning ; Yin, Xiaolin ; Duan, Meijuan ; Yuan, Dingyang</creatorcontrib><description>The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an
in vitro
Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-14496-5</identifier><identifier>PMID: 29079784</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/149 ; 631/61/338/552 ; Base Sequence ; Binding Sites ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - metabolism ; DNA Restriction Enzymes - metabolism ; DNA structure ; Humanities and Social Sciences ; multidisciplinary ; Nucleotide sequence ; Plasmids ; RNA Splicing ; Science ; Science (multidisciplinary) ; Splicing</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.14261-10, Article 14261</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</citedby><cites>FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660187/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660187/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29079784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Dong</creatorcontrib><creatorcontrib>Tan, Yanning</creatorcontrib><creatorcontrib>Sun, Zhizhong</creatorcontrib><creatorcontrib>Sun, Xuewu</creatorcontrib><creatorcontrib>Sheng, Xiabing</creatorcontrib><creatorcontrib>Zhou, Tianshun</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Mo, Yi</creatorcontrib><creatorcontrib>Jiang, Beibei</creatorcontrib><creatorcontrib>Ouyang, Ning</creatorcontrib><creatorcontrib>Yin, Xiaolin</creatorcontrib><creatorcontrib>Duan, Meijuan</creatorcontrib><creatorcontrib>Yuan, Dingyang</creatorcontrib><title>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an
in vitro
Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.</description><subject>631/337/149</subject><subject>631/61/338/552</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Restriction Enzymes - metabolism</subject><subject>DNA structure</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nucleotide sequence</subject><subject>Plasmids</subject><subject>RNA Splicing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Splicing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9vEzEQxVcIRKvSL8ABWeLCZan_rb2-IIVSIFILEgGulteZDS5eO7V3g8Knx2lKlSLhi0ea3xvP86uq5wS_Jpi1Z5mTRrU1JrImnCtRN4-qY4p5U1NG6eOD-qg6zfkal9NQxYl6Wh1RhaWSLT-ufs0D-u7GFNECzOAhZ7QYjf2JLsLv7WBGZ9EsZxg6v0WxR-8-zdBV9GCngqK3JsMSxYBMESUzwmqL5mET_caFFVqsvbO7oui-QB6Ts6Mr8MKNkJ9VT3rjM5ze3SfVt_cXX88_1pefP8zPZ5e15ZKPNQXLLQjMGRfW2Ia3XDFBFOCuZ8J0VKm2waYTgrJO2qUs_rolwUr2AlT5qJPqzX7ueuoGWFoIZVGv18kNJm11NE4_7AT3Q6_iRjdCYNLKMuDV3YAUb6ZiQw8uW_DeBIhT1kQ1kquCkoK-_Ae9jlMKxd6OErzFTLFC0T1lU8w5QX-_DMF6F63eR6tLtPo2Wt0U0YtDG_eSv0EWgO2BXFphBeng7f-P_QMhDK9I</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Yu, Dong</creator><creator>Tan, Yanning</creator><creator>Sun, Zhizhong</creator><creator>Sun, Xuewu</creator><creator>Sheng, Xiabing</creator><creator>Zhou, Tianshun</creator><creator>Liu, Ling</creator><creator>Mo, Yi</creator><creator>Jiang, Beibei</creator><creator>Ouyang, Ning</creator><creator>Yin, Xiaolin</creator><creator>Duan, Meijuan</creator><creator>Yuan, Dingyang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171027</creationdate><title>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</title><author>Yu, Dong ; Tan, Yanning ; Sun, Zhizhong ; Sun, Xuewu ; Sheng, Xiabing ; Zhou, Tianshun ; Liu, Ling ; Mo, Yi ; Jiang, Beibei ; Ouyang, Ning ; Yin, Xiaolin ; Duan, Meijuan ; Yuan, Dingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/337/149</topic><topic>631/61/338/552</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Restriction Enzymes - metabolism</topic><topic>DNA structure</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nucleotide sequence</topic><topic>Plasmids</topic><topic>RNA Splicing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dong</creatorcontrib><creatorcontrib>Tan, Yanning</creatorcontrib><creatorcontrib>Sun, Zhizhong</creatorcontrib><creatorcontrib>Sun, Xuewu</creatorcontrib><creatorcontrib>Sheng, Xiabing</creatorcontrib><creatorcontrib>Zhou, Tianshun</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Mo, Yi</creatorcontrib><creatorcontrib>Jiang, Beibei</creatorcontrib><creatorcontrib>Ouyang, Ning</creatorcontrib><creatorcontrib>Yin, Xiaolin</creatorcontrib><creatorcontrib>Duan, Meijuan</creatorcontrib><creatorcontrib>Yuan, Dingyang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dong</au><au>Tan, Yanning</au><au>Sun, Zhizhong</au><au>Sun, Xuewu</au><au>Sheng, Xiabing</au><au>Zhou, Tianshun</au><au>Liu, Ling</au><au>Mo, Yi</au><au>Jiang, Beibei</au><au>Ouyang, Ning</au><au>Yin, Xiaolin</au><au>Duan, Meijuan</au><au>Yuan, Dingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-27</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14261</spage><epage>10</epage><pages>14261-10</pages><artnum>14261</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an
in vitro
Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29079784</pmid><doi>10.1038/s41598-017-14496-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-10, Vol.7 (1), p.14261-10, Article 14261 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660187 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/337/149 631/61/338/552 Base Sequence Binding Sites Deoxyribonucleic acid DNA DNA - genetics DNA - metabolism DNA Restriction Enzymes - metabolism DNA structure Humanities and Social Sciences multidisciplinary Nucleotide sequence Plasmids RNA Splicing Science Science (multidisciplinary) Splicing |
title | In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Seamless%20Stack%20Enzymatic%20Assembly%20of%20DNA%20Molecules%20Based%20on%20a%20Strategy%20Involving%20Splicing%20of%20Restriction%20Sites&rft.jtitle=Scientific%20reports&rft.au=Yu,%20Dong&rft.date=2017-10-27&rft.volume=7&rft.issue=1&rft.spage=14261&rft.epage=10&rft.pages=14261-10&rft.artnum=14261&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-14496-5&rft_dat=%3Cproquest_pubme%3E1957490181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956480393&rft_id=info:pmid/29079784&rfr_iscdi=true |