In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites

The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-10, Vol.7 (1), p.14261-10, Article 14261
Hauptverfasser: Yu, Dong, Tan, Yanning, Sun, Zhizhong, Sun, Xuewu, Sheng, Xiabing, Zhou, Tianshun, Liu, Ling, Mo, Yi, Jiang, Beibei, Ouyang, Ning, Yin, Xiaolin, Duan, Meijuan, Yuan, Dingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 14261
container_title Scientific reports
container_volume 7
creator Yu, Dong
Tan, Yanning
Sun, Zhizhong
Sun, Xuewu
Sheng, Xiabing
Zhou, Tianshun
Liu, Ling
Mo, Yi
Jiang, Beibei
Ouyang, Ning
Yin, Xiaolin
Duan, Meijuan
Yuan, Dingyang
description The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an in vitro Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.
doi_str_mv 10.1038/s41598-017-14496-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957490181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</originalsourceid><addsrcrecordid>eNp1kU9vEzEQxVcIRKvSL8ABWeLCZan_rb2-IIVSIFILEgGulteZDS5eO7V3g8Knx2lKlSLhi0ea3xvP86uq5wS_Jpi1Z5mTRrU1JrImnCtRN4-qY4p5U1NG6eOD-qg6zfkal9NQxYl6Wh1RhaWSLT-ufs0D-u7GFNECzOAhZ7QYjf2JLsLv7WBGZ9EsZxg6v0WxR-8-zdBV9GCngqK3JsMSxYBMESUzwmqL5mET_caFFVqsvbO7oui-QB6Ts6Mr8MKNkJ9VT3rjM5ze3SfVt_cXX88_1pefP8zPZ5e15ZKPNQXLLQjMGRfW2Ia3XDFBFOCuZ8J0VKm2waYTgrJO2qUs_rolwUr2AlT5qJPqzX7ueuoGWFoIZVGv18kNJm11NE4_7AT3Q6_iRjdCYNLKMuDV3YAUb6ZiQw8uW_DeBIhT1kQ1kquCkoK-_Ae9jlMKxd6OErzFTLFC0T1lU8w5QX-_DMF6F63eR6tLtPo2Wt0U0YtDG_eSv0EWgO2BXFphBeng7f-P_QMhDK9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956480393</pqid></control><display><type>article</type><title>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Dong ; Tan, Yanning ; Sun, Zhizhong ; Sun, Xuewu ; Sheng, Xiabing ; Zhou, Tianshun ; Liu, Ling ; Mo, Yi ; Jiang, Beibei ; Ouyang, Ning ; Yin, Xiaolin ; Duan, Meijuan ; Yuan, Dingyang</creator><creatorcontrib>Yu, Dong ; Tan, Yanning ; Sun, Zhizhong ; Sun, Xuewu ; Sheng, Xiabing ; Zhou, Tianshun ; Liu, Ling ; Mo, Yi ; Jiang, Beibei ; Ouyang, Ning ; Yin, Xiaolin ; Duan, Meijuan ; Yuan, Dingyang</creatorcontrib><description>The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an in vitro Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-14496-5</identifier><identifier>PMID: 29079784</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/149 ; 631/61/338/552 ; Base Sequence ; Binding Sites ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - metabolism ; DNA Restriction Enzymes - metabolism ; DNA structure ; Humanities and Social Sciences ; multidisciplinary ; Nucleotide sequence ; Plasmids ; RNA Splicing ; Science ; Science (multidisciplinary) ; Splicing</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.14261-10, Article 14261</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</citedby><cites>FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660187/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660187/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29079784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Dong</creatorcontrib><creatorcontrib>Tan, Yanning</creatorcontrib><creatorcontrib>Sun, Zhizhong</creatorcontrib><creatorcontrib>Sun, Xuewu</creatorcontrib><creatorcontrib>Sheng, Xiabing</creatorcontrib><creatorcontrib>Zhou, Tianshun</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Mo, Yi</creatorcontrib><creatorcontrib>Jiang, Beibei</creatorcontrib><creatorcontrib>Ouyang, Ning</creatorcontrib><creatorcontrib>Yin, Xiaolin</creatorcontrib><creatorcontrib>Duan, Meijuan</creatorcontrib><creatorcontrib>Yuan, Dingyang</creatorcontrib><title>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an in vitro Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.</description><subject>631/337/149</subject><subject>631/61/338/552</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Restriction Enzymes - metabolism</subject><subject>DNA structure</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nucleotide sequence</subject><subject>Plasmids</subject><subject>RNA Splicing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Splicing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9vEzEQxVcIRKvSL8ABWeLCZan_rb2-IIVSIFILEgGulteZDS5eO7V3g8Knx2lKlSLhi0ea3xvP86uq5wS_Jpi1Z5mTRrU1JrImnCtRN4-qY4p5U1NG6eOD-qg6zfkal9NQxYl6Wh1RhaWSLT-ufs0D-u7GFNECzOAhZ7QYjf2JLsLv7WBGZ9EsZxg6v0WxR-8-zdBV9GCngqK3JsMSxYBMESUzwmqL5mET_caFFVqsvbO7oui-QB6Ts6Mr8MKNkJ9VT3rjM5ze3SfVt_cXX88_1pefP8zPZ5e15ZKPNQXLLQjMGRfW2Ia3XDFBFOCuZ8J0VKm2waYTgrJO2qUs_rolwUr2AlT5qJPqzX7ueuoGWFoIZVGv18kNJm11NE4_7AT3Q6_iRjdCYNLKMuDV3YAUb6ZiQw8uW_DeBIhT1kQ1kquCkoK-_Ae9jlMKxd6OErzFTLFC0T1lU8w5QX-_DMF6F63eR6tLtPo2Wt0U0YtDG_eSv0EWgO2BXFphBeng7f-P_QMhDK9I</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Yu, Dong</creator><creator>Tan, Yanning</creator><creator>Sun, Zhizhong</creator><creator>Sun, Xuewu</creator><creator>Sheng, Xiabing</creator><creator>Zhou, Tianshun</creator><creator>Liu, Ling</creator><creator>Mo, Yi</creator><creator>Jiang, Beibei</creator><creator>Ouyang, Ning</creator><creator>Yin, Xiaolin</creator><creator>Duan, Meijuan</creator><creator>Yuan, Dingyang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171027</creationdate><title>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</title><author>Yu, Dong ; Tan, Yanning ; Sun, Zhizhong ; Sun, Xuewu ; Sheng, Xiabing ; Zhou, Tianshun ; Liu, Ling ; Mo, Yi ; Jiang, Beibei ; Ouyang, Ning ; Yin, Xiaolin ; Duan, Meijuan ; Yuan, Dingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2ec4ce604346cac548493619e0bf36ab299850ab6623b7cd7419bd1097f6e9103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/337/149</topic><topic>631/61/338/552</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Restriction Enzymes - metabolism</topic><topic>DNA structure</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nucleotide sequence</topic><topic>Plasmids</topic><topic>RNA Splicing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dong</creatorcontrib><creatorcontrib>Tan, Yanning</creatorcontrib><creatorcontrib>Sun, Zhizhong</creatorcontrib><creatorcontrib>Sun, Xuewu</creatorcontrib><creatorcontrib>Sheng, Xiabing</creatorcontrib><creatorcontrib>Zhou, Tianshun</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Mo, Yi</creatorcontrib><creatorcontrib>Jiang, Beibei</creatorcontrib><creatorcontrib>Ouyang, Ning</creatorcontrib><creatorcontrib>Yin, Xiaolin</creatorcontrib><creatorcontrib>Duan, Meijuan</creatorcontrib><creatorcontrib>Yuan, Dingyang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dong</au><au>Tan, Yanning</au><au>Sun, Zhizhong</au><au>Sun, Xuewu</au><au>Sheng, Xiabing</au><au>Zhou, Tianshun</au><au>Liu, Ling</au><au>Mo, Yi</au><au>Jiang, Beibei</au><au>Ouyang, Ning</au><au>Yin, Xiaolin</au><au>Duan, Meijuan</au><au>Yuan, Dingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-27</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14261</spage><epage>10</epage><pages>14261-10</pages><artnum>14261</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The standard binary enzymatic assembly, which operates by inserting one DNA fragment into a plasmid, has a higher assembly success rate than the polynary enzymatic assembly, which inserts two or more fragments into the plasmid. However, it often leaves a nucleotide scar at the junction site. When a large DNA molecule is assembled stepwise into a backbone plasmid in a random piecewise manner, the scars will damage the structure of the original DNA sequence in the final assembled plasmids. Here, we propose an in vitro Seamless Stack Enzymatic Assembly (SSEA) method, a novel binary enzymatic assembly method involving a seamless strategy of splicing restriction sites via a stepwise process of multiple enzymatic reactions that does not leave nucleotide scars at the junction sites. We have demonstrated the success and versatility of this method through the assembly of 1) a 4.98 kb DNA molecule in the 5′ → 3′ direction using BamHI to generate the sticky end of the assembly entrance, 2) a 7.09 kb DNA molecule in the 3′ → 5′ direction using SmaI to generate the blunt end of the assembly entrance, and 3) an 11.88 kb DNA molecule by changing the assembly entrance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29079784</pmid><doi>10.1038/s41598-017-14496-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-10, Vol.7 (1), p.14261-10, Article 14261
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5660187
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/337/149
631/61/338/552
Base Sequence
Binding Sites
Deoxyribonucleic acid
DNA
DNA - genetics
DNA - metabolism
DNA Restriction Enzymes - metabolism
DNA structure
Humanities and Social Sciences
multidisciplinary
Nucleotide sequence
Plasmids
RNA Splicing
Science
Science (multidisciplinary)
Splicing
title In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Seamless%20Stack%20Enzymatic%20Assembly%20of%20DNA%20Molecules%20Based%20on%20a%20Strategy%20Involving%20Splicing%20of%20Restriction%20Sites&rft.jtitle=Scientific%20reports&rft.au=Yu,%20Dong&rft.date=2017-10-27&rft.volume=7&rft.issue=1&rft.spage=14261&rft.epage=10&rft.pages=14261-10&rft.artnum=14261&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-14496-5&rft_dat=%3Cproquest_pubme%3E1957490181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956480393&rft_id=info:pmid/29079784&rfr_iscdi=true