Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation

Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated Apc Δ716 Trp5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2017-10, Vol.36 (42), p.5885-5896
Hauptverfasser: Nakayama, M, Sakai, E, Echizen, K, Yamada, Y, Oshima, H, Han, T-S, Ohki, R, Fujii, S, Ochiai, A, Robine, S, Voon, D C, Tanaka, T, Taketo, M M, Oshima, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5896
container_issue 42
container_start_page 5885
container_title Oncogene
container_volume 36
creator Nakayama, M
Sakai, E
Echizen, K
Yamada, Y
Oshima, H
Han, T-S
Ohki, R
Fujii, S
Ochiai, A
Robine, S
Voon, D C
Tanaka, T
Taketo, M M
Oshima, M
description Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated Apc Δ716 Trp53 LSL•R270H villin-CreER compound mice, in which mutant p53 R270H was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant Trp53 R270H , but not Trp53 -null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in Apc Δ716 Trp53 R270H/R270H homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in Apc Δ716 Trp53 +/R270H heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry TP53 mutations at codon 273 significantly increased in comparison with those of TP53 wild-type tumors. Moreover, allografted Apc Δ716 Trp53 R270H/R270H organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53 R270H induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53 R270H , which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53 R270H induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53 R270H is a potential therapeutic target for the treatment of advanced CRCs.
doi_str_mv 10.1038/onc.2017.194
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5658682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510275640</galeid><sourcerecordid>A510275640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</originalsourceid><addsrcrecordid>eNptkktr3DAUhUVpaaZpd10XQTdd1FM9LFneFELoIxDopl0LWZY8CrbkSPKkWeWvR2bSISlBC4Hud47uPVwA3mO0xYiKL8HrLUG42eK2fgE2uG54xVhbvwQb1DJUtYSSE_AmpSuEUNMi8hqcEMGJwARtwN2FzyZl59UItfLaRDjHMESTkgsedrdwWrLyGc6MwryLYRl25TZQ6evFJZdXKljo_F4ltze-CKFKKWinsunhjcs7qMM0j-YvHEbl-2VUEdoQJ7Vq34JXVo3JvHu4T8Gf799-n_-sLn_9uDg_u6w0w02uCOK0a3UvUEeosJ2wRCkuqFCC4Rp3BpPadL0gjNKGW2oppkhh1dm-aRAS9BR8PfjOSzeZXhufoxrlHN2k4q0MysmnFe92cgh7yTgTXJBi8OnBIIbrpUQmJ5e0GctIJixJ4haXQBFDrKAf_0OvwhJLwivFSM0FL-0dqUGNRjpvQ_lXr6byjGFEGsZrVKjtM1Q5vZmcDt5YV96fCD4fBDqGlKKxxxkxkuvCyLIwcl2Y0kxd8A-PcznC_zakANUBSKXkBxMfDfOc4T23P8xM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952468631</pqid></control><display><type>article</type><title>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nakayama, M ; Sakai, E ; Echizen, K ; Yamada, Y ; Oshima, H ; Han, T-S ; Ohki, R ; Fujii, S ; Ochiai, A ; Robine, S ; Voon, D C ; Tanaka, T ; Taketo, M M ; Oshima, M</creator><creatorcontrib>Nakayama, M ; Sakai, E ; Echizen, K ; Yamada, Y ; Oshima, H ; Han, T-S ; Ohki, R ; Fujii, S ; Ochiai, A ; Robine, S ; Voon, D C ; Tanaka, T ; Taketo, M M ; Oshima, M</creatorcontrib><description>Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated Apc Δ716 Trp53 LSL•R270H villin-CreER compound mice, in which mutant p53 R270H was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant Trp53 R270H , but not Trp53 -null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in Apc Δ716 Trp53 R270H/R270H homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in Apc Δ716 Trp53 +/R270H heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry TP53 mutations at codon 273 significantly increased in comparison with those of TP53 wild-type tumors. Moreover, allografted Apc Δ716 Trp53 R270H/R270H organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53 R270H induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53 R270H , which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53 R270H induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53 R270H is a potential therapeutic target for the treatment of advanced CRCs.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2017.194</identifier><identifier>PMID: 28628120</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 38/91 ; 631/67/1504/1885 ; 631/67/70 ; 64/60 ; Adenomatous Polyposis Coli Protein - metabolism ; Analysis ; Animals ; Apoptosis ; Care and treatment ; Cell Biology ; Colorectal cancer ; Colorectal carcinoma ; Cytoplasm ; Development and progression ; Diagnosis ; Disease Progression ; Epithelial cells ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene mutation ; Genetic aspects ; Hepatocytes ; Human Genetics ; Humans ; Inflammation ; Internal Medicine ; Intestinal Neoplasms - genetics ; Intestinal Neoplasms - metabolism ; Intestinal Neoplasms - pathology ; Intestine ; Invasiveness ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms - secondary ; Localization ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Mutation ; Neoplasm Invasiveness ; Nuclei ; Oncology ; Organoids ; Original ; original-article ; p53 Protein ; Proto-Oncogene Proteins p21(ras) - metabolism ; Ribonucleic acid ; RNA ; Stroma ; Tamoxifen ; Tumor Microenvironment ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors</subject><ispartof>Oncogene, 2017-10, Vol.36 (42), p.5885-5896</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 19, 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</citedby><cites>FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</cites><orcidid>0000-0001-6857-4009 ; 0000-0002-9761-1750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2017.194$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2017.194$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28628120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakayama, M</creatorcontrib><creatorcontrib>Sakai, E</creatorcontrib><creatorcontrib>Echizen, K</creatorcontrib><creatorcontrib>Yamada, Y</creatorcontrib><creatorcontrib>Oshima, H</creatorcontrib><creatorcontrib>Han, T-S</creatorcontrib><creatorcontrib>Ohki, R</creatorcontrib><creatorcontrib>Fujii, S</creatorcontrib><creatorcontrib>Ochiai, A</creatorcontrib><creatorcontrib>Robine, S</creatorcontrib><creatorcontrib>Voon, D C</creatorcontrib><creatorcontrib>Tanaka, T</creatorcontrib><creatorcontrib>Taketo, M M</creatorcontrib><creatorcontrib>Oshima, M</creatorcontrib><title>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated Apc Δ716 Trp53 LSL•R270H villin-CreER compound mice, in which mutant p53 R270H was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant Trp53 R270H , but not Trp53 -null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in Apc Δ716 Trp53 R270H/R270H homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in Apc Δ716 Trp53 +/R270H heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry TP53 mutations at codon 273 significantly increased in comparison with those of TP53 wild-type tumors. Moreover, allografted Apc Δ716 Trp53 R270H/R270H organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53 R270H induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53 R270H , which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53 R270H induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53 R270H is a potential therapeutic target for the treatment of advanced CRCs.</description><subject>13/106</subject><subject>38/91</subject><subject>631/67/1504/1885</subject><subject>631/67/70</subject><subject>64/60</subject><subject>Adenomatous Polyposis Coli Protein - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Cytoplasm</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Disease Progression</subject><subject>Epithelial cells</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Hepatocytes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Internal Medicine</subject><subject>Intestinal Neoplasms - genetics</subject><subject>Intestinal Neoplasms - metabolism</subject><subject>Intestinal Neoplasms - pathology</subject><subject>Intestine</subject><subject>Invasiveness</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - secondary</subject><subject>Localization</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Neoplasm Invasiveness</subject><subject>Nuclei</subject><subject>Oncology</subject><subject>Organoids</subject><subject>Original</subject><subject>original-article</subject><subject>p53 Protein</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stroma</subject><subject>Tamoxifen</subject><subject>Tumor Microenvironment</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkktr3DAUhUVpaaZpd10XQTdd1FM9LFneFELoIxDopl0LWZY8CrbkSPKkWeWvR2bSISlBC4Hud47uPVwA3mO0xYiKL8HrLUG42eK2fgE2uG54xVhbvwQb1DJUtYSSE_AmpSuEUNMi8hqcEMGJwARtwN2FzyZl59UItfLaRDjHMESTkgsedrdwWrLyGc6MwryLYRl25TZQ6evFJZdXKljo_F4ltze-CKFKKWinsunhjcs7qMM0j-YvHEbl-2VUEdoQJ7Vq34JXVo3JvHu4T8Gf799-n_-sLn_9uDg_u6w0w02uCOK0a3UvUEeosJ2wRCkuqFCC4Rp3BpPadL0gjNKGW2oppkhh1dm-aRAS9BR8PfjOSzeZXhufoxrlHN2k4q0MysmnFe92cgh7yTgTXJBi8OnBIIbrpUQmJ5e0GctIJixJ4haXQBFDrKAf_0OvwhJLwivFSM0FL-0dqUGNRjpvQ_lXr6byjGFEGsZrVKjtM1Q5vZmcDt5YV96fCD4fBDqGlKKxxxkxkuvCyLIwcl2Y0kxd8A-PcznC_zakANUBSKXkBxMfDfOc4T23P8xM</recordid><startdate>20171019</startdate><enddate>20171019</enddate><creator>Nakayama, M</creator><creator>Sakai, E</creator><creator>Echizen, K</creator><creator>Yamada, Y</creator><creator>Oshima, H</creator><creator>Han, T-S</creator><creator>Ohki, R</creator><creator>Fujii, S</creator><creator>Ochiai, A</creator><creator>Robine, S</creator><creator>Voon, D C</creator><creator>Tanaka, T</creator><creator>Taketo, M M</creator><creator>Oshima, M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6857-4009</orcidid><orcidid>https://orcid.org/0000-0002-9761-1750</orcidid></search><sort><creationdate>20171019</creationdate><title>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</title><author>Nakayama, M ; Sakai, E ; Echizen, K ; Yamada, Y ; Oshima, H ; Han, T-S ; Ohki, R ; Fujii, S ; Ochiai, A ; Robine, S ; Voon, D C ; Tanaka, T ; Taketo, M M ; Oshima, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/106</topic><topic>38/91</topic><topic>631/67/1504/1885</topic><topic>631/67/70</topic><topic>64/60</topic><topic>Adenomatous Polyposis Coli Protein - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Cytoplasm</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Disease Progression</topic><topic>Epithelial cells</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Hepatocytes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Internal Medicine</topic><topic>Intestinal Neoplasms - genetics</topic><topic>Intestinal Neoplasms - metabolism</topic><topic>Intestinal Neoplasms - pathology</topic><topic>Intestine</topic><topic>Invasiveness</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - secondary</topic><topic>Localization</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Neoplasm Invasiveness</topic><topic>Nuclei</topic><topic>Oncology</topic><topic>Organoids</topic><topic>Original</topic><topic>original-article</topic><topic>p53 Protein</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stroma</topic><topic>Tamoxifen</topic><topic>Tumor Microenvironment</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, M</creatorcontrib><creatorcontrib>Sakai, E</creatorcontrib><creatorcontrib>Echizen, K</creatorcontrib><creatorcontrib>Yamada, Y</creatorcontrib><creatorcontrib>Oshima, H</creatorcontrib><creatorcontrib>Han, T-S</creatorcontrib><creatorcontrib>Ohki, R</creatorcontrib><creatorcontrib>Fujii, S</creatorcontrib><creatorcontrib>Ochiai, A</creatorcontrib><creatorcontrib>Robine, S</creatorcontrib><creatorcontrib>Voon, D C</creatorcontrib><creatorcontrib>Tanaka, T</creatorcontrib><creatorcontrib>Taketo, M M</creatorcontrib><creatorcontrib>Oshima, M</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, M</au><au>Sakai, E</au><au>Echizen, K</au><au>Yamada, Y</au><au>Oshima, H</au><au>Han, T-S</au><au>Ohki, R</au><au>Fujii, S</au><au>Ochiai, A</au><au>Robine, S</au><au>Voon, D C</au><au>Tanaka, T</au><au>Taketo, M M</au><au>Oshima, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2017-10-19</date><risdate>2017</risdate><volume>36</volume><issue>42</issue><spage>5885</spage><epage>5896</epage><pages>5885-5896</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated Apc Δ716 Trp53 LSL•R270H villin-CreER compound mice, in which mutant p53 R270H was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant Trp53 R270H , but not Trp53 -null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in Apc Δ716 Trp53 R270H/R270H homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in Apc Δ716 Trp53 +/R270H heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry TP53 mutations at codon 273 significantly increased in comparison with those of TP53 wild-type tumors. Moreover, allografted Apc Δ716 Trp53 R270H/R270H organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53 R270H induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53 R270H , which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53 R270H induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53 R270H is a potential therapeutic target for the treatment of advanced CRCs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28628120</pmid><doi>10.1038/onc.2017.194</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6857-4009</orcidid><orcidid>https://orcid.org/0000-0002-9761-1750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2017-10, Vol.36 (42), p.5885-5896
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5658682
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13/106
38/91
631/67/1504/1885
631/67/70
64/60
Adenomatous Polyposis Coli Protein - metabolism
Analysis
Animals
Apoptosis
Care and treatment
Cell Biology
Colorectal cancer
Colorectal carcinoma
Cytoplasm
Development and progression
Diagnosis
Disease Progression
Epithelial cells
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene mutation
Genetic aspects
Hepatocytes
Human Genetics
Humans
Inflammation
Internal Medicine
Intestinal Neoplasms - genetics
Intestinal Neoplasms - metabolism
Intestinal Neoplasms - pathology
Intestine
Invasiveness
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver Neoplasms - secondary
Localization
Medicine
Medicine & Public Health
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Mutation
Neoplasm Invasiveness
Nuclei
Oncology
Organoids
Original
original-article
p53 Protein
Proto-Oncogene Proteins p21(ras) - metabolism
Ribonucleic acid
RNA
Stroma
Tamoxifen
Tumor Microenvironment
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumors
title Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intestinal%20cancer%20progression%20by%20mutant%20p53%20through%20the%20acquisition%20of%20invasiveness%20associated%20with%20complex%20glandular%20formation&rft.jtitle=Oncogene&rft.au=Nakayama,%20M&rft.date=2017-10-19&rft.volume=36&rft.issue=42&rft.spage=5885&rft.epage=5896&rft.pages=5885-5896&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2017.194&rft_dat=%3Cgale_pubme%3EA510275640%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952468631&rft_id=info:pmid/28628120&rft_galeid=A510275640&rfr_iscdi=true