Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation
Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated Apc Δ716 Trp5...
Gespeichert in:
Veröffentlicht in: | Oncogene 2017-10, Vol.36 (42), p.5885-5896 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5896 |
---|---|
container_issue | 42 |
container_start_page | 5885 |
container_title | Oncogene |
container_volume | 36 |
creator | Nakayama, M Sakai, E Echizen, K Yamada, Y Oshima, H Han, T-S Ohki, R Fujii, S Ochiai, A Robine, S Voon, D C Tanaka, T Taketo, M M Oshima, M |
description | Tumor suppressor
TP53
is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in
in vivo
tumors remains unsolved. We generated
Apc
Δ716
Trp53
LSL•R270H
villin-CreER
compound mice, in which mutant p53
R270H
was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant
Trp53
R270H
, but not
Trp53
-null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in
Apc
Δ716
Trp53
R270H/R270H
homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in
Apc
Δ716
Trp53
+/R270H
heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry
TP53
mutations at codon 273 significantly increased in comparison with those of
TP53
wild-type tumors. Moreover, allografted
Apc
Δ716
Trp53
R270H/R270H
organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53
R270H
induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53
R270H
, which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53
R270H
induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53
R270H
is a potential therapeutic target for the treatment of advanced CRCs. |
doi_str_mv | 10.1038/onc.2017.194 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5658682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510275640</galeid><sourcerecordid>A510275640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</originalsourceid><addsrcrecordid>eNptkktr3DAUhUVpaaZpd10XQTdd1FM9LFneFELoIxDopl0LWZY8CrbkSPKkWeWvR2bSISlBC4Hud47uPVwA3mO0xYiKL8HrLUG42eK2fgE2uG54xVhbvwQb1DJUtYSSE_AmpSuEUNMi8hqcEMGJwARtwN2FzyZl59UItfLaRDjHMESTkgsedrdwWrLyGc6MwryLYRl25TZQ6evFJZdXKljo_F4ltze-CKFKKWinsunhjcs7qMM0j-YvHEbl-2VUEdoQJ7Vq34JXVo3JvHu4T8Gf799-n_-sLn_9uDg_u6w0w02uCOK0a3UvUEeosJ2wRCkuqFCC4Rp3BpPadL0gjNKGW2oppkhh1dm-aRAS9BR8PfjOSzeZXhufoxrlHN2k4q0MysmnFe92cgh7yTgTXJBi8OnBIIbrpUQmJ5e0GctIJixJ4haXQBFDrKAf_0OvwhJLwivFSM0FL-0dqUGNRjpvQ_lXr6byjGFEGsZrVKjtM1Q5vZmcDt5YV96fCD4fBDqGlKKxxxkxkuvCyLIwcl2Y0kxd8A-PcznC_zakANUBSKXkBxMfDfOc4T23P8xM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952468631</pqid></control><display><type>article</type><title>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nakayama, M ; Sakai, E ; Echizen, K ; Yamada, Y ; Oshima, H ; Han, T-S ; Ohki, R ; Fujii, S ; Ochiai, A ; Robine, S ; Voon, D C ; Tanaka, T ; Taketo, M M ; Oshima, M</creator><creatorcontrib>Nakayama, M ; Sakai, E ; Echizen, K ; Yamada, Y ; Oshima, H ; Han, T-S ; Ohki, R ; Fujii, S ; Ochiai, A ; Robine, S ; Voon, D C ; Tanaka, T ; Taketo, M M ; Oshima, M</creatorcontrib><description>Tumor suppressor
TP53
is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in
in vivo
tumors remains unsolved. We generated
Apc
Δ716
Trp53
LSL•R270H
villin-CreER
compound mice, in which mutant p53
R270H
was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant
Trp53
R270H
, but not
Trp53
-null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in
Apc
Δ716
Trp53
R270H/R270H
homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in
Apc
Δ716
Trp53
+/R270H
heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry
TP53
mutations at codon 273 significantly increased in comparison with those of
TP53
wild-type tumors. Moreover, allografted
Apc
Δ716
Trp53
R270H/R270H
organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53
R270H
induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53
R270H
, which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53
R270H
induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53
R270H
is a potential therapeutic target for the treatment of advanced CRCs.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2017.194</identifier><identifier>PMID: 28628120</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 38/91 ; 631/67/1504/1885 ; 631/67/70 ; 64/60 ; Adenomatous Polyposis Coli Protein - metabolism ; Analysis ; Animals ; Apoptosis ; Care and treatment ; Cell Biology ; Colorectal cancer ; Colorectal carcinoma ; Cytoplasm ; Development and progression ; Diagnosis ; Disease Progression ; Epithelial cells ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene mutation ; Genetic aspects ; Hepatocytes ; Human Genetics ; Humans ; Inflammation ; Internal Medicine ; Intestinal Neoplasms - genetics ; Intestinal Neoplasms - metabolism ; Intestinal Neoplasms - pathology ; Intestine ; Invasiveness ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms - secondary ; Localization ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Mutation ; Neoplasm Invasiveness ; Nuclei ; Oncology ; Organoids ; Original ; original-article ; p53 Protein ; Proto-Oncogene Proteins p21(ras) - metabolism ; Ribonucleic acid ; RNA ; Stroma ; Tamoxifen ; Tumor Microenvironment ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors</subject><ispartof>Oncogene, 2017-10, Vol.36 (42), p.5885-5896</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 19, 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</citedby><cites>FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</cites><orcidid>0000-0001-6857-4009 ; 0000-0002-9761-1750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2017.194$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2017.194$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28628120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakayama, M</creatorcontrib><creatorcontrib>Sakai, E</creatorcontrib><creatorcontrib>Echizen, K</creatorcontrib><creatorcontrib>Yamada, Y</creatorcontrib><creatorcontrib>Oshima, H</creatorcontrib><creatorcontrib>Han, T-S</creatorcontrib><creatorcontrib>Ohki, R</creatorcontrib><creatorcontrib>Fujii, S</creatorcontrib><creatorcontrib>Ochiai, A</creatorcontrib><creatorcontrib>Robine, S</creatorcontrib><creatorcontrib>Voon, D C</creatorcontrib><creatorcontrib>Tanaka, T</creatorcontrib><creatorcontrib>Taketo, M M</creatorcontrib><creatorcontrib>Oshima, M</creatorcontrib><title>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Tumor suppressor
TP53
is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in
in vivo
tumors remains unsolved. We generated
Apc
Δ716
Trp53
LSL•R270H
villin-CreER
compound mice, in which mutant p53
R270H
was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant
Trp53
R270H
, but not
Trp53
-null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in
Apc
Δ716
Trp53
R270H/R270H
homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in
Apc
Δ716
Trp53
+/R270H
heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry
TP53
mutations at codon 273 significantly increased in comparison with those of
TP53
wild-type tumors. Moreover, allografted
Apc
Δ716
Trp53
R270H/R270H
organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53
R270H
induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53
R270H
, which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53
R270H
induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53
R270H
is a potential therapeutic target for the treatment of advanced CRCs.</description><subject>13/106</subject><subject>38/91</subject><subject>631/67/1504/1885</subject><subject>631/67/70</subject><subject>64/60</subject><subject>Adenomatous Polyposis Coli Protein - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Cytoplasm</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Disease Progression</subject><subject>Epithelial cells</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Hepatocytes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Internal Medicine</subject><subject>Intestinal Neoplasms - genetics</subject><subject>Intestinal Neoplasms - metabolism</subject><subject>Intestinal Neoplasms - pathology</subject><subject>Intestine</subject><subject>Invasiveness</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - secondary</subject><subject>Localization</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Neoplasm Invasiveness</subject><subject>Nuclei</subject><subject>Oncology</subject><subject>Organoids</subject><subject>Original</subject><subject>original-article</subject><subject>p53 Protein</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stroma</subject><subject>Tamoxifen</subject><subject>Tumor Microenvironment</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkktr3DAUhUVpaaZpd10XQTdd1FM9LFneFELoIxDopl0LWZY8CrbkSPKkWeWvR2bSISlBC4Hud47uPVwA3mO0xYiKL8HrLUG42eK2fgE2uG54xVhbvwQb1DJUtYSSE_AmpSuEUNMi8hqcEMGJwARtwN2FzyZl59UItfLaRDjHMESTkgsedrdwWrLyGc6MwryLYRl25TZQ6evFJZdXKljo_F4ltze-CKFKKWinsunhjcs7qMM0j-YvHEbl-2VUEdoQJ7Vq34JXVo3JvHu4T8Gf799-n_-sLn_9uDg_u6w0w02uCOK0a3UvUEeosJ2wRCkuqFCC4Rp3BpPadL0gjNKGW2oppkhh1dm-aRAS9BR8PfjOSzeZXhufoxrlHN2k4q0MysmnFe92cgh7yTgTXJBi8OnBIIbrpUQmJ5e0GctIJixJ4haXQBFDrKAf_0OvwhJLwivFSM0FL-0dqUGNRjpvQ_lXr6byjGFEGsZrVKjtM1Q5vZmcDt5YV96fCD4fBDqGlKKxxxkxkuvCyLIwcl2Y0kxd8A-PcznC_zakANUBSKXkBxMfDfOc4T23P8xM</recordid><startdate>20171019</startdate><enddate>20171019</enddate><creator>Nakayama, M</creator><creator>Sakai, E</creator><creator>Echizen, K</creator><creator>Yamada, Y</creator><creator>Oshima, H</creator><creator>Han, T-S</creator><creator>Ohki, R</creator><creator>Fujii, S</creator><creator>Ochiai, A</creator><creator>Robine, S</creator><creator>Voon, D C</creator><creator>Tanaka, T</creator><creator>Taketo, M M</creator><creator>Oshima, M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6857-4009</orcidid><orcidid>https://orcid.org/0000-0002-9761-1750</orcidid></search><sort><creationdate>20171019</creationdate><title>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</title><author>Nakayama, M ; Sakai, E ; Echizen, K ; Yamada, Y ; Oshima, H ; Han, T-S ; Ohki, R ; Fujii, S ; Ochiai, A ; Robine, S ; Voon, D C ; Tanaka, T ; Taketo, M M ; Oshima, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-2063b9cd80b238fb8f2aa6838a85141be124ebd8253376f3f3130a1abfd770083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/106</topic><topic>38/91</topic><topic>631/67/1504/1885</topic><topic>631/67/70</topic><topic>64/60</topic><topic>Adenomatous Polyposis Coli Protein - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Cytoplasm</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Disease Progression</topic><topic>Epithelial cells</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Hepatocytes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Internal Medicine</topic><topic>Intestinal Neoplasms - genetics</topic><topic>Intestinal Neoplasms - metabolism</topic><topic>Intestinal Neoplasms - pathology</topic><topic>Intestine</topic><topic>Invasiveness</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - secondary</topic><topic>Localization</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Neoplasm Invasiveness</topic><topic>Nuclei</topic><topic>Oncology</topic><topic>Organoids</topic><topic>Original</topic><topic>original-article</topic><topic>p53 Protein</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stroma</topic><topic>Tamoxifen</topic><topic>Tumor Microenvironment</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, M</creatorcontrib><creatorcontrib>Sakai, E</creatorcontrib><creatorcontrib>Echizen, K</creatorcontrib><creatorcontrib>Yamada, Y</creatorcontrib><creatorcontrib>Oshima, H</creatorcontrib><creatorcontrib>Han, T-S</creatorcontrib><creatorcontrib>Ohki, R</creatorcontrib><creatorcontrib>Fujii, S</creatorcontrib><creatorcontrib>Ochiai, A</creatorcontrib><creatorcontrib>Robine, S</creatorcontrib><creatorcontrib>Voon, D C</creatorcontrib><creatorcontrib>Tanaka, T</creatorcontrib><creatorcontrib>Taketo, M M</creatorcontrib><creatorcontrib>Oshima, M</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, M</au><au>Sakai, E</au><au>Echizen, K</au><au>Yamada, Y</au><au>Oshima, H</au><au>Han, T-S</au><au>Ohki, R</au><au>Fujii, S</au><au>Ochiai, A</au><au>Robine, S</au><au>Voon, D C</au><au>Tanaka, T</au><au>Taketo, M M</au><au>Oshima, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2017-10-19</date><risdate>2017</risdate><volume>36</volume><issue>42</issue><spage>5885</spage><epage>5896</epage><pages>5885-5896</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Tumor suppressor
TP53
is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in
in vivo
tumors remains unsolved. We generated
Apc
Δ716
Trp53
LSL•R270H
villin-CreER
compound mice, in which mutant p53
R270H
was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant
Trp53
R270H
, but not
Trp53
-null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in
Apc
Δ716
Trp53
R270H/R270H
homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in
Apc
Δ716
Trp53
+/R270H
heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry
TP53
mutations at codon 273 significantly increased in comparison with those of
TP53
wild-type tumors. Moreover, allografted
Apc
Δ716
Trp53
R270H/R270H
organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53
R270H
induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53
R270H
, which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53
R270H
induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53
R270H
is a potential therapeutic target for the treatment of advanced CRCs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28628120</pmid><doi>10.1038/onc.2017.194</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6857-4009</orcidid><orcidid>https://orcid.org/0000-0002-9761-1750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2017-10, Vol.36 (42), p.5885-5896 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5658682 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 13/106 38/91 631/67/1504/1885 631/67/70 64/60 Adenomatous Polyposis Coli Protein - metabolism Analysis Animals Apoptosis Care and treatment Cell Biology Colorectal cancer Colorectal carcinoma Cytoplasm Development and progression Diagnosis Disease Progression Epithelial cells Gene Expression Profiling Gene Expression Regulation, Neoplastic Gene mutation Genetic aspects Hepatocytes Human Genetics Humans Inflammation Internal Medicine Intestinal Neoplasms - genetics Intestinal Neoplasms - metabolism Intestinal Neoplasms - pathology Intestine Invasiveness Liver Neoplasms - genetics Liver Neoplasms - metabolism Liver Neoplasms - secondary Localization Medicine Medicine & Public Health Mice Mice, Inbred C57BL Mice, Inbred NOD Mice, Knockout Mice, SCID Mutation Neoplasm Invasiveness Nuclei Oncology Organoids Original original-article p53 Protein Proto-Oncogene Proteins p21(ras) - metabolism Ribonucleic acid RNA Stroma Tamoxifen Tumor Microenvironment Tumor suppressor genes Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumors |
title | Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intestinal%20cancer%20progression%20by%20mutant%20p53%20through%20the%20acquisition%20of%20invasiveness%20associated%20with%20complex%20glandular%20formation&rft.jtitle=Oncogene&rft.au=Nakayama,%20M&rft.date=2017-10-19&rft.volume=36&rft.issue=42&rft.spage=5885&rft.epage=5896&rft.pages=5885-5896&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2017.194&rft_dat=%3Cgale_pubme%3EA510275640%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952468631&rft_id=info:pmid/28628120&rft_galeid=A510275640&rfr_iscdi=true |