Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice

Delayed transplantation frequently occurs in mechanically transplanted rice in China, leading to a significant reduction in grain yield. Thus, determining how to compensate grain yield loss is crucial for improving rice cultivation technology. A field experiment was conducted to investigate the effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-10, Vol.7 (1), p.14072-10, Article 14072
Hauptverfasser: Liu, Qihua, Zhou, Xuebiao, Li, Jingling, Xin, Caiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Delayed transplantation frequently occurs in mechanically transplanted rice in China, leading to a significant reduction in grain yield. Thus, determining how to compensate grain yield loss is crucial for improving rice cultivation technology. A field experiment was conducted to investigate the effects of cultivation density and seedling age on agronomic traits and grain yield of mechanically transplanted rice. With increasing seedling age, rice tiller number, pre-anthesis dry matter accumulation, remobilization efficiency and contribution to grain yield, as well as post-anthesis photosynthesis amount decreased, causing reductions in the number of effective panicles, the total number of grains per panicle, the sink capacity per tiller, and grain yield. In rice transplanted at 30- and 35-day seedling ages, increasing cultivation density significantly enhanced the number of effective panicles and grain yield. Additionally, there existed strong, positive correlations between sink capacity per tiller and pre-anthesis dry matter remobilization efficiency and pre-anthesis dry matter contribution to grain yield. We conclude that in addition to cultivation density, enhancing the amount of pre-anthesis dry matter and the remobilization efficiency could be feasible for mitigating grain yield loss caused by delayed transplantation.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-14672-7