Directional mass transport in an atmospheric pressure surface barrier discharge
In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-10, Vol.7 (1), p.14003-9, Article 14003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 14003 |
container_title | Scientific reports |
container_volume | 7 |
creator | Dickenson, A. Morabit, Y. Hasan, M. I. Walsh, J. L. |
description | In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow. |
doi_str_mv | 10.1038/s41598-017-14117-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5656682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956089398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-17fe9c009fe818b94e2fe62b8381583e3e75ff706e8ca9bfe0adfd436866e62c3</originalsourceid><addsrcrecordid>eNp1kV1LHTEQhkNpqaL-AS9kwZverM3HJpvcCMX6URC8qdchmzM5J7K7WSe7Bf99o0fltGAIk8A882YmLyHHjJ4xKvT33DBpdE1ZW7OGPcdPZJ_TRtZccP55575HjnJ-oGVJbhpmvpI9bmhLtVT75O5nRPBzTKPrq8HlXM3oxjwlnKs4Vq7seUh52gBGX00IOS8IVQnBeag6hxgBq1XMfuNwDYfkS3B9hqPX84DcX13-vripb--uf138uK29bOhcszaA8ZSaAJrpzjTAAyjeaaGZ1AIEtDKElirQ3pkuAHWrsGqE0koVzosDcr7VnZZugJWHsfTd2wnj4PDJJhftv5kxbuw6_bFSSaU0LwLfXgUwPS6QZzuUGaDv3QhpyZYZqag2wuiCnv6HPqQFy4e9ULJpW0FlofiW8phyRgjvzTBqny2zW8tsscy-WGZZKTrZHeO95M2gAogtkEtqXAPuvP2x7F_UgaMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955477305</pqid></control><display><type>article</type><title>Directional mass transport in an atmospheric pressure surface barrier discharge</title><source>Open Access: PubMed Central</source><source>Open Access: Nature Open Access</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Springer Nature OA Free Journals</source><creator>Dickenson, A. ; Morabit, Y. ; Hasan, M. I. ; Walsh, J. L.</creator><creatorcontrib>Dickenson, A. ; Morabit, Y. ; Hasan, M. I. ; Walsh, J. L.</creatorcontrib><description>In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-14117-1</identifier><identifier>PMID: 29070856</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/766/1960 ; Atmospheric pressure ; Chemical speciation ; Electrodes ; Gas flow ; Humanities and Social Sciences ; Mass transport ; multidisciplinary ; Phase shift ; Plasma ; Science ; Science (multidisciplinary) ; Spatial distribution ; Species ; Surface charge</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.14003-9, Article 14003</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-17fe9c009fe818b94e2fe62b8381583e3e75ff706e8ca9bfe0adfd436866e62c3</citedby><cites>FETCH-LOGICAL-c540t-17fe9c009fe818b94e2fe62b8381583e3e75ff706e8ca9bfe0adfd436866e62c3</cites><orcidid>0000-0001-6993-933X ; 0000-0002-6318-0892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656682/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656682/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29070856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickenson, A.</creatorcontrib><creatorcontrib>Morabit, Y.</creatorcontrib><creatorcontrib>Hasan, M. I.</creatorcontrib><creatorcontrib>Walsh, J. L.</creatorcontrib><title>Directional mass transport in an atmospheric pressure surface barrier discharge</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.</description><subject>639/166/987</subject><subject>639/766/1960</subject><subject>Atmospheric pressure</subject><subject>Chemical speciation</subject><subject>Electrodes</subject><subject>Gas flow</subject><subject>Humanities and Social Sciences</subject><subject>Mass transport</subject><subject>multidisciplinary</subject><subject>Phase shift</subject><subject>Plasma</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial distribution</subject><subject>Species</subject><subject>Surface charge</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1LHTEQhkNpqaL-AS9kwZverM3HJpvcCMX6URC8qdchmzM5J7K7WSe7Bf99o0fltGAIk8A882YmLyHHjJ4xKvT33DBpdE1ZW7OGPcdPZJ_TRtZccP55575HjnJ-oGVJbhpmvpI9bmhLtVT75O5nRPBzTKPrq8HlXM3oxjwlnKs4Vq7seUh52gBGX00IOS8IVQnBeag6hxgBq1XMfuNwDYfkS3B9hqPX84DcX13-vripb--uf138uK29bOhcszaA8ZSaAJrpzjTAAyjeaaGZ1AIEtDKElirQ3pkuAHWrsGqE0koVzosDcr7VnZZugJWHsfTd2wnj4PDJJhftv5kxbuw6_bFSSaU0LwLfXgUwPS6QZzuUGaDv3QhpyZYZqag2wuiCnv6HPqQFy4e9ULJpW0FlofiW8phyRgjvzTBqny2zW8tsscy-WGZZKTrZHeO95M2gAogtkEtqXAPuvP2x7F_UgaMs</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Dickenson, A.</creator><creator>Morabit, Y.</creator><creator>Hasan, M. I.</creator><creator>Walsh, J. L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6993-933X</orcidid><orcidid>https://orcid.org/0000-0002-6318-0892</orcidid></search><sort><creationdate>20171025</creationdate><title>Directional mass transport in an atmospheric pressure surface barrier discharge</title><author>Dickenson, A. ; Morabit, Y. ; Hasan, M. I. ; Walsh, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-17fe9c009fe818b94e2fe62b8381583e3e75ff706e8ca9bfe0adfd436866e62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/166/987</topic><topic>639/766/1960</topic><topic>Atmospheric pressure</topic><topic>Chemical speciation</topic><topic>Electrodes</topic><topic>Gas flow</topic><topic>Humanities and Social Sciences</topic><topic>Mass transport</topic><topic>multidisciplinary</topic><topic>Phase shift</topic><topic>Plasma</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial distribution</topic><topic>Species</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickenson, A.</creatorcontrib><creatorcontrib>Morabit, Y.</creatorcontrib><creatorcontrib>Hasan, M. I.</creatorcontrib><creatorcontrib>Walsh, J. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickenson, A.</au><au>Morabit, Y.</au><au>Hasan, M. I.</au><au>Walsh, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional mass transport in an atmospheric pressure surface barrier discharge</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-25</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14003</spage><epage>9</epage><pages>14003-9</pages><artnum>14003</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29070856</pmid><doi>10.1038/s41598-017-14117-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6993-933X</orcidid><orcidid>https://orcid.org/0000-0002-6318-0892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-10, Vol.7 (1), p.14003-9, Article 14003 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5656682 |
source | Open Access: PubMed Central; Open Access: Nature Open Access; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library; Springer Nature OA Free Journals |
subjects | 639/166/987 639/766/1960 Atmospheric pressure Chemical speciation Electrodes Gas flow Humanities and Social Sciences Mass transport multidisciplinary Phase shift Plasma Science Science (multidisciplinary) Spatial distribution Species Surface charge |
title | Directional mass transport in an atmospheric pressure surface barrier discharge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20mass%20transport%20in%20an%20atmospheric%20pressure%20surface%20barrier%20discharge&rft.jtitle=Scientific%20reports&rft.au=Dickenson,%20A.&rft.date=2017-10-25&rft.volume=7&rft.issue=1&rft.spage=14003&rft.epage=9&rft.pages=14003-9&rft.artnum=14003&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-14117-1&rft_dat=%3Cproquest_pubme%3E1956089398%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955477305&rft_id=info:pmid/29070856&rfr_iscdi=true |