Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias
Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducib...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-10, Vol.7 (1), p.14070-15, Article 14070 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 14070 |
container_title | Scientific reports |
container_volume | 7 |
creator | Xie, Angela W. Binder, Bernard Y. K. Khalil, Andrew S. Schmitt, Samantha K. Johnson, Hunter J. Zacharias, Nicholas A. Murphy, William L. |
description | Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D “self-assembly”. As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications. |
doi_str_mv | 10.1038/s41598-017-14325-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5656593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955476960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c4aa7a8f932cde4687c12b6e8911a11716ed6560226940e5e0dae2b6bef8c57e3</originalsourceid><addsrcrecordid>eNp1kUFLJDEQhYOsqKh_wIMEvOyl1ySddDqXBXdQVxhQUMFbyKSre1vSyZh0C_PvN-O4Mi5YlxTUV6_yeAidUPKDkrI-T5wKVReEyoLykolC7aADRrgoWMnYt61-Hx2n9ExyCaY4VXtonykiiVTqAD3Ngh9jcA4afA-uLUxKMCzcCocW348w4Bk4hy-6LkJnRkj4xqcxTnZM-M5NsV-GEbxdYeMbPO89mA7wr96kI7TbGpfg-P09RI9Xlw-z38X89vpmdjEvrOBkLCw3Rpq6VSWzDfCqlpayRQW1otRQKmkFTSUqwlilOAEBpDGQgQW0tRUSykP0c6O7nBYDNBayHeP0MvaDiSsdTK8_T3z_R3fhVYssK1SZBb6_C8TwMkEa9dAnm00bD2FKmqp8vlZSkoye_Yc-hyn6bG9NCS4rVa0ptqFsDClFaD8-Q4leZ6c32emcnX7LTqu8dLpt42PlX1IZKDdAyiPfQdy6_bXsX2sbpTk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955476960</pqid></control><display><type>article</type><title>Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xie, Angela W. ; Binder, Bernard Y. K. ; Khalil, Andrew S. ; Schmitt, Samantha K. ; Johnson, Hunter J. ; Zacharias, Nicholas A. ; Murphy, William L.</creator><creatorcontrib>Xie, Angela W. ; Binder, Bernard Y. K. ; Khalil, Andrew S. ; Schmitt, Samantha K. ; Johnson, Hunter J. ; Zacharias, Nicholas A. ; Murphy, William L.</creatorcontrib><description>Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D “self-assembly”. As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-14325-9</identifier><identifier>PMID: 29070799</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/1360 ; 631/61/2320 ; 631/61/54/2295 ; Aggregates ; Aggregation behavior ; Cell Culture Techniques ; Cell Differentiation ; Cell Lineage ; Cells, Cultured ; Drug screening ; Ectoderm ; Embryoid Bodies - cytology ; Endoderm ; Human Embryonic Stem Cells - cytology ; Humanities and Social Sciences ; Humans ; Kinetics ; Mesoderm ; multidisciplinary ; Organoids ; Organoids - cytology ; Pluripotency ; Pluripotent Stem Cells - cytology ; Porosity ; Progenitor cells ; Regenerative medicine ; Science ; Science (multidisciplinary) ; Self-assembly ; Signal Transduction ; Stem cells</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.14070-15, Article 14070</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c4aa7a8f932cde4687c12b6e8911a11716ed6560226940e5e0dae2b6bef8c57e3</citedby><cites>FETCH-LOGICAL-c540t-c4aa7a8f932cde4687c12b6e8911a11716ed6560226940e5e0dae2b6bef8c57e3</cites><orcidid>0000-0002-7564-4199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656593/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656593/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29070799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Angela W.</creatorcontrib><creatorcontrib>Binder, Bernard Y. K.</creatorcontrib><creatorcontrib>Khalil, Andrew S.</creatorcontrib><creatorcontrib>Schmitt, Samantha K.</creatorcontrib><creatorcontrib>Johnson, Hunter J.</creatorcontrib><creatorcontrib>Zacharias, Nicholas A.</creatorcontrib><creatorcontrib>Murphy, William L.</creatorcontrib><title>Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D “self-assembly”. As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications.</description><subject>631/532/1360</subject><subject>631/61/2320</subject><subject>631/61/54/2295</subject><subject>Aggregates</subject><subject>Aggregation behavior</subject><subject>Cell Culture Techniques</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cells, Cultured</subject><subject>Drug screening</subject><subject>Ectoderm</subject><subject>Embryoid Bodies - cytology</subject><subject>Endoderm</subject><subject>Human Embryonic Stem Cells - cytology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Mesoderm</subject><subject>multidisciplinary</subject><subject>Organoids</subject><subject>Organoids - cytology</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Porosity</subject><subject>Progenitor cells</subject><subject>Regenerative medicine</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-assembly</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFLJDEQhYOsqKh_wIMEvOyl1ySddDqXBXdQVxhQUMFbyKSre1vSyZh0C_PvN-O4Mi5YlxTUV6_yeAidUPKDkrI-T5wKVReEyoLykolC7aADRrgoWMnYt61-Hx2n9ExyCaY4VXtonykiiVTqAD3Ngh9jcA4afA-uLUxKMCzcCocW348w4Bk4hy-6LkJnRkj4xqcxTnZM-M5NsV-GEbxdYeMbPO89mA7wr96kI7TbGpfg-P09RI9Xlw-z38X89vpmdjEvrOBkLCw3Rpq6VSWzDfCqlpayRQW1otRQKmkFTSUqwlilOAEBpDGQgQW0tRUSykP0c6O7nBYDNBayHeP0MvaDiSsdTK8_T3z_R3fhVYssK1SZBb6_C8TwMkEa9dAnm00bD2FKmqp8vlZSkoye_Yc-hyn6bG9NCS4rVa0ptqFsDClFaD8-Q4leZ6c32emcnX7LTqu8dLpt42PlX1IZKDdAyiPfQdy6_bXsX2sbpTk</recordid><startdate>20171025</startdate><enddate>20171025</enddate><creator>Xie, Angela W.</creator><creator>Binder, Bernard Y. K.</creator><creator>Khalil, Andrew S.</creator><creator>Schmitt, Samantha K.</creator><creator>Johnson, Hunter J.</creator><creator>Zacharias, Nicholas A.</creator><creator>Murphy, William L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7564-4199</orcidid></search><sort><creationdate>20171025</creationdate><title>Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias</title><author>Xie, Angela W. ; Binder, Bernard Y. K. ; Khalil, Andrew S. ; Schmitt, Samantha K. ; Johnson, Hunter J. ; Zacharias, Nicholas A. ; Murphy, William L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c4aa7a8f932cde4687c12b6e8911a11716ed6560226940e5e0dae2b6bef8c57e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/532/1360</topic><topic>631/61/2320</topic><topic>631/61/54/2295</topic><topic>Aggregates</topic><topic>Aggregation behavior</topic><topic>Cell Culture Techniques</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cells, Cultured</topic><topic>Drug screening</topic><topic>Ectoderm</topic><topic>Embryoid Bodies - cytology</topic><topic>Endoderm</topic><topic>Human Embryonic Stem Cells - cytology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Mesoderm</topic><topic>multidisciplinary</topic><topic>Organoids</topic><topic>Organoids - cytology</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Porosity</topic><topic>Progenitor cells</topic><topic>Regenerative medicine</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-assembly</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Angela W.</creatorcontrib><creatorcontrib>Binder, Bernard Y. K.</creatorcontrib><creatorcontrib>Khalil, Andrew S.</creatorcontrib><creatorcontrib>Schmitt, Samantha K.</creatorcontrib><creatorcontrib>Johnson, Hunter J.</creatorcontrib><creatorcontrib>Zacharias, Nicholas A.</creatorcontrib><creatorcontrib>Murphy, William L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Angela W.</au><au>Binder, Bernard Y. K.</au><au>Khalil, Andrew S.</au><au>Schmitt, Samantha K.</au><au>Johnson, Hunter J.</au><au>Zacharias, Nicholas A.</au><au>Murphy, William L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-10-25</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>14070</spage><epage>15</epage><pages>14070-15</pages><artnum>14070</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D “self-assembly”. As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29070799</pmid><doi>10.1038/s41598-017-14325-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7564-4199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-10, Vol.7 (1), p.14070-15, Article 14070 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5656593 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/532/1360 631/61/2320 631/61/54/2295 Aggregates Aggregation behavior Cell Culture Techniques Cell Differentiation Cell Lineage Cells, Cultured Drug screening Ectoderm Embryoid Bodies - cytology Endoderm Human Embryonic Stem Cells - cytology Humanities and Social Sciences Humans Kinetics Mesoderm multidisciplinary Organoids Organoids - cytology Pluripotency Pluripotent Stem Cells - cytology Porosity Progenitor cells Regenerative medicine Science Science (multidisciplinary) Self-assembly Signal Transduction Stem cells |
title | Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Self-assembly%20of%20Stem%20Cell%20Aggregates%20Instructs%20Pluripotency%20and%20Lineage%20Bias&rft.jtitle=Scientific%20reports&rft.au=Xie,%20Angela%20W.&rft.date=2017-10-25&rft.volume=7&rft.issue=1&rft.spage=14070&rft.epage=15&rft.pages=14070-15&rft.artnum=14070&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-14325-9&rft_dat=%3Cproquest_pubme%3E1955476960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955476960&rft_id=info:pmid/29070799&rfr_iscdi=true |