Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium

Summary Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix–turn–heli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2017-10, Vol.19 (10), p.3834-3845
Hauptverfasser: Dorman, Charles J., Dorman, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3845
container_issue 10
container_start_page 3834
container_title Environmental microbiology
container_volume 19
creator Dorman, Charles J.
Dorman, Matthew J.
description Summary Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix–turn–helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet ‘wing’ into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non‐invasive Gram‐negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T‐rich horizontally acquired virulence genes that are silenced by the nucleoid‐associated protein H‐NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.
doi_str_mv 10.1111/1462-2920.13838
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5655915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911709124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5008-c868d7bf26cb5e3185d694e879d3796a326f61d6736054e17a42647446ecb3693</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw5oYsceGy1N9OLkhoVaBSqx5auFqOM-m6SuxlnGy1_Hq8bFlRLvXF9viZVzN-p6reMvqRlXXKpOYL3vByFbWon1XHh8jzw5nxo-pVzneUMiMMfVkd8VoLJoU5rn4tU5wwDST1ZBNwHiB6ILcQgUzoYvYY1lNIkbRbEmIXEPxEEFyX5qkEyI_QYkjEr9IA6IC42JFrN4wpwjA4AnECDN6RDJg2DsnNdr0K44xhHl9XL3o3ZHjzsJ9U37-c3Sy_LS6uvp4vP18svKK0Xvha151pe659q0CwWnW6kVCbphOm0U5w3WvWaSM0VRKYcZJraaTU4FuhG3FSfdrrrud2hM6XmtANdo1hdLi1yQX7-CWGlb1NG6u0Ug1TReDDgwCmnzPkyY4h-11_EdKcLaeUKs2NeBplDWOGFkdkQd__h96lGWP5iUIpThWVrC7U6Z7ymHJG6A91M2p3I2B3Jtud4fbPCJSMd_-2e-D_el4AtQfuwwDbp_Ts2eX5Xvg3U3y8Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952050418</pqid></control><display><type>article</type><title>Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dorman, Charles J. ; Dorman, Matthew J.</creator><creatorcontrib>Dorman, Charles J. ; Dorman, Matthew J.</creatorcontrib><description>Summary Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix–turn–helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet ‘wing’ into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non‐invasive Gram‐negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T‐rich horizontally acquired virulence genes that are silenced by the nucleoid‐associated protein H‐NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13838</identifier><identifier>PMID: 28631437</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Composition - genetics ; Base Sequence ; Binding sites ; Binding Sites - genetics ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; essential genes ; Gene Expression Regulation, Bacterial ; Gene silencing ; Genes ; H protein ; Humans ; Minireview ; Minireviews ; Nucleotide sequence ; nucleotide sequences ; Pathogens ; phenotype ; Protein structure ; Proteins ; Regulators ; Regulatory proteins ; Salmonella ; Salmonella Typhimurium ; Salmonella typhimurium - genetics ; Salmonella typhimurium - pathogenicity ; Shape recognition ; Target recognition ; Trans-Activators - genetics ; Trans-Activators - metabolism ; transcription (genetics) ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic - genetics ; Vibrio cholerae ; Vibrio cholerae - genetics ; Vibrio cholerae - pathogenicity ; Virulence ; Virulence - genetics ; Waterborne diseases</subject><ispartof>Environmental microbiology, 2017-10, Vol.19 (10), p.3834-3845</ispartof><rights>2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2017 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5008-c868d7bf26cb5e3185d694e879d3796a326f61d6736054e17a42647446ecb3693</citedby><cites>FETCH-LOGICAL-c5008-c868d7bf26cb5e3185d694e879d3796a326f61d6736054e17a42647446ecb3693</cites><orcidid>0000-0001-7064-6163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13838$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13838$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28631437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorman, Charles J.</creatorcontrib><creatorcontrib>Dorman, Matthew J.</creatorcontrib><title>Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix–turn–helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet ‘wing’ into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non‐invasive Gram‐negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T‐rich horizontally acquired virulence genes that are silenced by the nucleoid‐associated protein H‐NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.</description><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Composition - genetics</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>essential genes</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>H protein</subject><subject>Humans</subject><subject>Minireview</subject><subject>Minireviews</subject><subject>Nucleotide sequence</subject><subject>nucleotide sequences</subject><subject>Pathogens</subject><subject>phenotype</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Regulators</subject><subject>Regulatory proteins</subject><subject>Salmonella</subject><subject>Salmonella Typhimurium</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - pathogenicity</subject><subject>Shape recognition</subject><subject>Target recognition</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic - genetics</subject><subject>Vibrio cholerae</subject><subject>Vibrio cholerae - genetics</subject><subject>Vibrio cholerae - pathogenicity</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><subject>Waterborne diseases</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw5oYsceGy1N9OLkhoVaBSqx5auFqOM-m6SuxlnGy1_Hq8bFlRLvXF9viZVzN-p6reMvqRlXXKpOYL3vByFbWon1XHh8jzw5nxo-pVzneUMiMMfVkd8VoLJoU5rn4tU5wwDST1ZBNwHiB6ILcQgUzoYvYY1lNIkbRbEmIXEPxEEFyX5qkEyI_QYkjEr9IA6IC42JFrN4wpwjA4AnECDN6RDJg2DsnNdr0K44xhHl9XL3o3ZHjzsJ9U37-c3Sy_LS6uvp4vP18svKK0Xvha151pe659q0CwWnW6kVCbphOm0U5w3WvWaSM0VRKYcZJraaTU4FuhG3FSfdrrrud2hM6XmtANdo1hdLi1yQX7-CWGlb1NG6u0Ug1TReDDgwCmnzPkyY4h-11_EdKcLaeUKs2NeBplDWOGFkdkQd__h96lGWP5iUIpThWVrC7U6Z7ymHJG6A91M2p3I2B3Jtud4fbPCJSMd_-2e-D_el4AtQfuwwDbp_Ts2eX5Xvg3U3y8Og</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Dorman, Charles J.</creator><creator>Dorman, Matthew J.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7064-6163</orcidid></search><sort><creationdate>201710</creationdate><title>Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium</title><author>Dorman, Charles J. ; Dorman, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5008-c868d7bf26cb5e3185d694e879d3796a326f61d6736054e17a42647446ecb3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Composition - genetics</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>essential genes</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>H protein</topic><topic>Humans</topic><topic>Minireview</topic><topic>Minireviews</topic><topic>Nucleotide sequence</topic><topic>nucleotide sequences</topic><topic>Pathogens</topic><topic>phenotype</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Regulators</topic><topic>Regulatory proteins</topic><topic>Salmonella</topic><topic>Salmonella Typhimurium</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - pathogenicity</topic><topic>Shape recognition</topic><topic>Target recognition</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic - genetics</topic><topic>Vibrio cholerae</topic><topic>Vibrio cholerae - genetics</topic><topic>Vibrio cholerae - pathogenicity</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorman, Charles J.</creatorcontrib><creatorcontrib>Dorman, Matthew J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorman, Charles J.</au><au>Dorman, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>19</volume><issue>10</issue><spage>3834</spage><epage>3845</epage><pages>3834-3845</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Indirect readout mechanisms of transcription control rely on the recognition of DNA shape by transcription factors (TFs). TFs may also employ a direct readout mechanism that involves the reading of the base sequence in the DNA major groove at the binding site. TFs with winged helix–turn–helix (wHTH) motifs use an alpha helix to read the base sequence in the major groove while inserting a beta sheet ‘wing’ into the adjacent minor groove. Such wHTH proteins are important regulators of virulence gene transcription in many pathogens; they also control housekeeping genes. This article considers the cases of the non‐invasive Gram‐negative pathogen Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium. Both possess clusters of A + T‐rich horizontally acquired virulence genes that are silenced by the nucleoid‐associated protein H‐NS and regulated positively or negatively by wHTH TFs: for example, ToxR and LeuO in V. cholerae; HilA, LeuO, SlyA and OmpR in S. Typhimurium. Because of their relatively relaxed base sequence requirements for target recognition, indirect readout mechanisms have the potential to engage regulatory proteins with many more targets than might be the case using direct readout, making indirect readout an important, yet often ignored, contributor to the expression of pathogenic phenotypes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28631437</pmid><doi>10.1111/1462-2920.13838</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7064-6163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2017-10, Vol.19 (10), p.3834-3845
issn 1462-2912
1462-2920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5655915
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Composition - genetics
Base Sequence
Binding sites
Binding Sites - genetics
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
essential genes
Gene Expression Regulation, Bacterial
Gene silencing
Genes
H protein
Humans
Minireview
Minireviews
Nucleotide sequence
nucleotide sequences
Pathogens
phenotype
Protein structure
Proteins
Regulators
Regulatory proteins
Salmonella
Salmonella Typhimurium
Salmonella typhimurium - genetics
Salmonella typhimurium - pathogenicity
Shape recognition
Target recognition
Trans-Activators - genetics
Trans-Activators - metabolism
transcription (genetics)
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic - genetics
Vibrio cholerae
Vibrio cholerae - genetics
Vibrio cholerae - pathogenicity
Virulence
Virulence - genetics
Waterborne diseases
title Control of virulence gene transcription by indirect readout in Vibrio cholerae and Salmonella enterica serovar Typhimurium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20virulence%20gene%20transcription%20by%20indirect%20readout%20in%20Vibrio%20cholerae%20and%20Salmonella%20enterica%20serovar%20Typhimurium&rft.jtitle=Environmental%20microbiology&rft.au=Dorman,%20Charles%20J.&rft.date=2017-10&rft.volume=19&rft.issue=10&rft.spage=3834&rft.epage=3845&rft.pages=3834-3845&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13838&rft_dat=%3Cproquest_pubme%3E1911709124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952050418&rft_id=info:pmid/28631437&rfr_iscdi=true