Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system
Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent v...
Gespeichert in:
Veröffentlicht in: | Addiction biology 2018-03, Vol.23 (2), p.569-584 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 2 |
container_start_page | 569 |
container_title | Addiction biology |
container_volume | 23 |
creator | Wei, Xiaoyan Ma, Tengfei Cheng, Yifeng Huang, Cathy C.Y. Wang, Xuehua Lu, Jiayi Wang, Jun |
description | Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.
D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons. |
doi_str_mv | 10.1111/adb.12512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5654711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001724246</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3692-bf01c1a4393be0e2a8d7c1b289d59d4ebae807d1f1d9b61c2ebfb46b285c8f5c3</originalsourceid><addsrcrecordid>eNpdkc9O3DAQxi0EKn_aAy9QWeLCJeBxYie5IAFLWyRQL-3ZspPJblBip3YC3VsfgWfkSWqWZQX44tHMT5--mY-QQ2AnEN-prs0JcAF8i-xBKssEJGPbz7UQieQgdsl-CHeMAc9F-ons8iJLpRDlHrmduUH3rUU6A-o8nXHqscJhdP7p3yP-HTyG0No5tTh5ZwNtLR0XSCu0o9ddbPt7NwUalmHE_jPZaXQX8Mv6PyC_v139uvyR3Pz8fn15fpMM0R1PTMOgAp2lZWqQIddFnVdgeFHWoqwzNBoLltfQQF0aCRVH05hMRkBURSOq9ICcvegOk-mxXptRg2977ZfK6Va9n9h2oebuXgkpshwgChyvBbz7M2EYVd-GCrtOW4zrKChKyIRkUEb06AN65yZv43qKx4vmPOOZjNTXt442Vl4vHYHTF-Ch7XC5mQNTzxGqGKFaRajOZxerIv0PDs-PkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001724246</pqid></control><display><type>article</type><title>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Xiaoyan ; Ma, Tengfei ; Cheng, Yifeng ; Huang, Cathy C.Y. ; Wang, Xuehua ; Lu, Jiayi ; Wang, Jun</creator><creatorcontrib>Wei, Xiaoyan ; Ma, Tengfei ; Cheng, Yifeng ; Huang, Cathy C.Y. ; Wang, Xuehua ; Lu, Jiayi ; Wang, Jun</creatorcontrib><description>Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.
D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.</description><identifier>ISSN: 1355-6215</identifier><identifier>EISSN: 1369-1600</identifier><identifier>DOI: 10.1111/adb.12512</identifier><identifier>PMID: 28436559</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Addictions ; Addictive behaviors ; Alcohol ; Alcoholic beverages ; Amygdala ; Brain slice preparation ; Central nervous system ; cortex ; Dopamine ; dopamine D1 receptor ; Dopamine D1 receptors ; dopamine D2 receptor ; Dopamine D2 receptors ; Drug addiction ; Electrophysiology ; Excitability ; Green fluorescent protein ; Hippocampus ; Neostriatum ; Neurons ; Prefrontal cortex ; Promoters ; Reinforcement ; Rodents ; striatum ; Transgenic mice</subject><ispartof>Addiction biology, 2018-03, Vol.23 (2), p.569-584</ispartof><rights>2017 Society for the Study of Addiction</rights><rights>2017 Society for the Study of Addiction.</rights><rights>2018 Society for the Study of Addiction</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0085-4722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fadb.12512$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fadb.12512$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28436559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xiaoyan</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Cheng, Yifeng</creatorcontrib><creatorcontrib>Huang, Cathy C.Y.</creatorcontrib><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Lu, Jiayi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</title><title>Addiction biology</title><addtitle>Addict Biol</addtitle><description>Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.
D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.</description><subject>Addictions</subject><subject>Addictive behaviors</subject><subject>Alcohol</subject><subject>Alcoholic beverages</subject><subject>Amygdala</subject><subject>Brain slice preparation</subject><subject>Central nervous system</subject><subject>cortex</subject><subject>Dopamine</subject><subject>dopamine D1 receptor</subject><subject>Dopamine D1 receptors</subject><subject>dopamine D2 receptor</subject><subject>Dopamine D2 receptors</subject><subject>Drug addiction</subject><subject>Electrophysiology</subject><subject>Excitability</subject><subject>Green fluorescent protein</subject><subject>Hippocampus</subject><subject>Neostriatum</subject><subject>Neurons</subject><subject>Prefrontal cortex</subject><subject>Promoters</subject><subject>Reinforcement</subject><subject>Rodents</subject><subject>striatum</subject><subject>Transgenic mice</subject><issn>1355-6215</issn><issn>1369-1600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9O3DAQxi0EKn_aAy9QWeLCJeBxYie5IAFLWyRQL-3ZspPJblBip3YC3VsfgWfkSWqWZQX44tHMT5--mY-QQ2AnEN-prs0JcAF8i-xBKssEJGPbz7UQieQgdsl-CHeMAc9F-ons8iJLpRDlHrmduUH3rUU6A-o8nXHqscJhdP7p3yP-HTyG0No5tTh5ZwNtLR0XSCu0o9ddbPt7NwUalmHE_jPZaXQX8Mv6PyC_v139uvyR3Pz8fn15fpMM0R1PTMOgAp2lZWqQIddFnVdgeFHWoqwzNBoLltfQQF0aCRVH05hMRkBURSOq9ICcvegOk-mxXptRg2977ZfK6Va9n9h2oebuXgkpshwgChyvBbz7M2EYVd-GCrtOW4zrKChKyIRkUEb06AN65yZv43qKx4vmPOOZjNTXt442Vl4vHYHTF-Ch7XC5mQNTzxGqGKFaRajOZxerIv0PDs-PkA</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Wei, Xiaoyan</creator><creator>Ma, Tengfei</creator><creator>Cheng, Yifeng</creator><creator>Huang, Cathy C.Y.</creator><creator>Wang, Xuehua</creator><creator>Lu, Jiayi</creator><creator>Wang, Jun</creator><general>John Wiley & Sons, Inc</general><scope>NPM</scope><scope>7QG</scope><scope>7T5</scope><scope>7TM</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0085-4722</orcidid></search><sort><creationdate>201803</creationdate><title>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</title><author>Wei, Xiaoyan ; Ma, Tengfei ; Cheng, Yifeng ; Huang, Cathy C.Y. ; Wang, Xuehua ; Lu, Jiayi ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3692-bf01c1a4393be0e2a8d7c1b289d59d4ebae807d1f1d9b61c2ebfb46b285c8f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addictions</topic><topic>Addictive behaviors</topic><topic>Alcohol</topic><topic>Alcoholic beverages</topic><topic>Amygdala</topic><topic>Brain slice preparation</topic><topic>Central nervous system</topic><topic>cortex</topic><topic>Dopamine</topic><topic>dopamine D1 receptor</topic><topic>Dopamine D1 receptors</topic><topic>dopamine D2 receptor</topic><topic>Dopamine D2 receptors</topic><topic>Drug addiction</topic><topic>Electrophysiology</topic><topic>Excitability</topic><topic>Green fluorescent protein</topic><topic>Hippocampus</topic><topic>Neostriatum</topic><topic>Neurons</topic><topic>Prefrontal cortex</topic><topic>Promoters</topic><topic>Reinforcement</topic><topic>Rodents</topic><topic>striatum</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaoyan</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Cheng, Yifeng</creatorcontrib><creatorcontrib>Huang, Cathy C.Y.</creatorcontrib><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Lu, Jiayi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Addiction biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaoyan</au><au>Ma, Tengfei</au><au>Cheng, Yifeng</au><au>Huang, Cathy C.Y.</au><au>Wang, Xuehua</au><au>Lu, Jiayi</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</atitle><jtitle>Addiction biology</jtitle><addtitle>Addict Biol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>23</volume><issue>2</issue><spage>569</spage><epage>584</epage><pages>569-584</pages><issn>1355-6215</issn><eissn>1369-1600</eissn><abstract>Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.
D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>28436559</pmid><doi>10.1111/adb.12512</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0085-4722</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-6215 |
ispartof | Addiction biology, 2018-03, Vol.23 (2), p.569-584 |
issn | 1355-6215 1369-1600 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5654711 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Addictions Addictive behaviors Alcohol Alcoholic beverages Amygdala Brain slice preparation Central nervous system cortex Dopamine dopamine D1 receptor Dopamine D1 receptors dopamine D2 receptor Dopamine D2 receptors Drug addiction Electrophysiology Excitability Green fluorescent protein Hippocampus Neostriatum Neurons Prefrontal cortex Promoters Reinforcement Rodents striatum Transgenic mice |
title | Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine%20D1%20or%20D2%20receptor%E2%80%90expressing%20neurons%20in%20the%20central%20nervous%20system&rft.jtitle=Addiction%20biology&rft.au=Wei,%20Xiaoyan&rft.date=2018-03&rft.volume=23&rft.issue=2&rft.spage=569&rft.epage=584&rft.pages=569-584&rft.issn=1355-6215&rft.eissn=1369-1600&rft_id=info:doi/10.1111/adb.12512&rft_dat=%3Cproquest_pubme%3E2001724246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001724246&rft_id=info:pmid/28436559&rfr_iscdi=true |