Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system

Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Addiction biology 2018-03, Vol.23 (2), p.569-584
Hauptverfasser: Wei, Xiaoyan, Ma, Tengfei, Cheng, Yifeng, Huang, Cathy C.Y., Wang, Xuehua, Lu, Jiayi, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 2
container_start_page 569
container_title Addiction biology
container_volume 23
creator Wei, Xiaoyan
Ma, Tengfei
Cheng, Yifeng
Huang, Cathy C.Y.
Wang, Xuehua
Lu, Jiayi
Wang, Jun
description Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction. D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.
doi_str_mv 10.1111/adb.12512
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5654711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001724246</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3692-bf01c1a4393be0e2a8d7c1b289d59d4ebae807d1f1d9b61c2ebfb46b285c8f5c3</originalsourceid><addsrcrecordid>eNpdkc9O3DAQxi0EKn_aAy9QWeLCJeBxYie5IAFLWyRQL-3ZspPJblBip3YC3VsfgWfkSWqWZQX44tHMT5--mY-QQ2AnEN-prs0JcAF8i-xBKssEJGPbz7UQieQgdsl-CHeMAc9F-ons8iJLpRDlHrmduUH3rUU6A-o8nXHqscJhdP7p3yP-HTyG0No5tTh5ZwNtLR0XSCu0o9ddbPt7NwUalmHE_jPZaXQX8Mv6PyC_v139uvyR3Pz8fn15fpMM0R1PTMOgAp2lZWqQIddFnVdgeFHWoqwzNBoLltfQQF0aCRVH05hMRkBURSOq9ICcvegOk-mxXptRg2977ZfK6Va9n9h2oebuXgkpshwgChyvBbz7M2EYVd-GCrtOW4zrKChKyIRkUEb06AN65yZv43qKx4vmPOOZjNTXt442Vl4vHYHTF-Ch7XC5mQNTzxGqGKFaRajOZxerIv0PDs-PkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001724246</pqid></control><display><type>article</type><title>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Xiaoyan ; Ma, Tengfei ; Cheng, Yifeng ; Huang, Cathy C.Y. ; Wang, Xuehua ; Lu, Jiayi ; Wang, Jun</creator><creatorcontrib>Wei, Xiaoyan ; Ma, Tengfei ; Cheng, Yifeng ; Huang, Cathy C.Y. ; Wang, Xuehua ; Lu, Jiayi ; Wang, Jun</creatorcontrib><description>Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction. D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.</description><identifier>ISSN: 1355-6215</identifier><identifier>EISSN: 1369-1600</identifier><identifier>DOI: 10.1111/adb.12512</identifier><identifier>PMID: 28436559</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Addictions ; Addictive behaviors ; Alcohol ; Alcoholic beverages ; Amygdala ; Brain slice preparation ; Central nervous system ; cortex ; Dopamine ; dopamine D1 receptor ; Dopamine D1 receptors ; dopamine D2 receptor ; Dopamine D2 receptors ; Drug addiction ; Electrophysiology ; Excitability ; Green fluorescent protein ; Hippocampus ; Neostriatum ; Neurons ; Prefrontal cortex ; Promoters ; Reinforcement ; Rodents ; striatum ; Transgenic mice</subject><ispartof>Addiction biology, 2018-03, Vol.23 (2), p.569-584</ispartof><rights>2017 Society for the Study of Addiction</rights><rights>2017 Society for the Study of Addiction.</rights><rights>2018 Society for the Study of Addiction</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0085-4722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fadb.12512$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fadb.12512$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28436559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xiaoyan</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Cheng, Yifeng</creatorcontrib><creatorcontrib>Huang, Cathy C.Y.</creatorcontrib><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Lu, Jiayi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</title><title>Addiction biology</title><addtitle>Addict Biol</addtitle><description>Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction. D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.</description><subject>Addictions</subject><subject>Addictive behaviors</subject><subject>Alcohol</subject><subject>Alcoholic beverages</subject><subject>Amygdala</subject><subject>Brain slice preparation</subject><subject>Central nervous system</subject><subject>cortex</subject><subject>Dopamine</subject><subject>dopamine D1 receptor</subject><subject>Dopamine D1 receptors</subject><subject>dopamine D2 receptor</subject><subject>Dopamine D2 receptors</subject><subject>Drug addiction</subject><subject>Electrophysiology</subject><subject>Excitability</subject><subject>Green fluorescent protein</subject><subject>Hippocampus</subject><subject>Neostriatum</subject><subject>Neurons</subject><subject>Prefrontal cortex</subject><subject>Promoters</subject><subject>Reinforcement</subject><subject>Rodents</subject><subject>striatum</subject><subject>Transgenic mice</subject><issn>1355-6215</issn><issn>1369-1600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc9O3DAQxi0EKn_aAy9QWeLCJeBxYie5IAFLWyRQL-3ZspPJblBip3YC3VsfgWfkSWqWZQX44tHMT5--mY-QQ2AnEN-prs0JcAF8i-xBKssEJGPbz7UQieQgdsl-CHeMAc9F-ons8iJLpRDlHrmduUH3rUU6A-o8nXHqscJhdP7p3yP-HTyG0No5tTh5ZwNtLR0XSCu0o9ddbPt7NwUalmHE_jPZaXQX8Mv6PyC_v139uvyR3Pz8fn15fpMM0R1PTMOgAp2lZWqQIddFnVdgeFHWoqwzNBoLltfQQF0aCRVH05hMRkBURSOq9ICcvegOk-mxXptRg2977ZfK6Va9n9h2oebuXgkpshwgChyvBbz7M2EYVd-GCrtOW4zrKChKyIRkUEb06AN65yZv43qKx4vmPOOZjNTXt442Vl4vHYHTF-Ch7XC5mQNTzxGqGKFaRajOZxerIv0PDs-PkA</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Wei, Xiaoyan</creator><creator>Ma, Tengfei</creator><creator>Cheng, Yifeng</creator><creator>Huang, Cathy C.Y.</creator><creator>Wang, Xuehua</creator><creator>Lu, Jiayi</creator><creator>Wang, Jun</creator><general>John Wiley &amp; Sons, Inc</general><scope>NPM</scope><scope>7QG</scope><scope>7T5</scope><scope>7TM</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0085-4722</orcidid></search><sort><creationdate>201803</creationdate><title>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</title><author>Wei, Xiaoyan ; Ma, Tengfei ; Cheng, Yifeng ; Huang, Cathy C.Y. ; Wang, Xuehua ; Lu, Jiayi ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3692-bf01c1a4393be0e2a8d7c1b289d59d4ebae807d1f1d9b61c2ebfb46b285c8f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addictions</topic><topic>Addictive behaviors</topic><topic>Alcohol</topic><topic>Alcoholic beverages</topic><topic>Amygdala</topic><topic>Brain slice preparation</topic><topic>Central nervous system</topic><topic>cortex</topic><topic>Dopamine</topic><topic>dopamine D1 receptor</topic><topic>Dopamine D1 receptors</topic><topic>dopamine D2 receptor</topic><topic>Dopamine D2 receptors</topic><topic>Drug addiction</topic><topic>Electrophysiology</topic><topic>Excitability</topic><topic>Green fluorescent protein</topic><topic>Hippocampus</topic><topic>Neostriatum</topic><topic>Neurons</topic><topic>Prefrontal cortex</topic><topic>Promoters</topic><topic>Reinforcement</topic><topic>Rodents</topic><topic>striatum</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaoyan</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Cheng, Yifeng</creatorcontrib><creatorcontrib>Huang, Cathy C.Y.</creatorcontrib><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Lu, Jiayi</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Addiction biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaoyan</au><au>Ma, Tengfei</au><au>Cheng, Yifeng</au><au>Huang, Cathy C.Y.</au><au>Wang, Xuehua</au><au>Lu, Jiayi</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system</atitle><jtitle>Addiction biology</jtitle><addtitle>Addict Biol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>23</volume><issue>2</issue><spage>569</spage><epage>584</epage><pages>569-584</pages><issn>1355-6215</issn><eissn>1369-1600</eissn><abstract>Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R‐expressing or D2R‐expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP‐positive and Cre‐positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4–34 percent of neurons co‐expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R‐positive and D1R‐negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a‐Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R‐positive and D2R‐positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R‐expressing or D2R‐expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction. D1(D2)‐GFP and D1(D2)‐Cre mice target the same populations of striatal neurons. D1R‐expressing and D2R‐expressing neurons are highly segregated in the cortex, hippocampus, and amygdala. Excessive alcohol consumption distinctly regulates excitability of D1R‐expressing and D2R‐expressing ventral CA1 neurons.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28436559</pmid><doi>10.1111/adb.12512</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0085-4722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-6215
ispartof Addiction biology, 2018-03, Vol.23 (2), p.569-584
issn 1355-6215
1369-1600
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5654711
source Wiley Online Library Journals Frontfile Complete
subjects Addictions
Addictive behaviors
Alcohol
Alcoholic beverages
Amygdala
Brain slice preparation
Central nervous system
cortex
Dopamine
dopamine D1 receptor
Dopamine D1 receptors
dopamine D2 receptor
Dopamine D2 receptors
Drug addiction
Electrophysiology
Excitability
Green fluorescent protein
Hippocampus
Neostriatum
Neurons
Prefrontal cortex
Promoters
Reinforcement
Rodents
striatum
Transgenic mice
title Dopamine D1 or D2 receptor‐expressing neurons in the central nervous system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine%20D1%20or%20D2%20receptor%E2%80%90expressing%20neurons%20in%20the%20central%20nervous%20system&rft.jtitle=Addiction%20biology&rft.au=Wei,%20Xiaoyan&rft.date=2018-03&rft.volume=23&rft.issue=2&rft.spage=569&rft.epage=584&rft.pages=569-584&rft.issn=1355-6215&rft.eissn=1369-1600&rft_id=info:doi/10.1111/adb.12512&rft_dat=%3Cproquest_pubme%3E2001724246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001724246&rft_id=info:pmid/28436559&rfr_iscdi=true