A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species

Summary Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2017-11, Vol.106 (3), p.439-451
Hauptverfasser: Afanador, Gustavo A., Guerra, Alfredo J., Swift, Russell P., Rodriguez, Ryan E., Bartee, David, Matthews, Krista A., Schön, Arne, Freire, Ernesto, Freel Meyers, Caren L., Prigge, Sean T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 3
container_start_page 439
container_title Molecular microbiology
container_volume 106
creator Afanador, Gustavo A.
Guerra, Alfredo J.
Swift, Russell P.
Rodriguez, Ryan E.
Bartee, David
Matthews, Krista A.
Schön, Arne
Freire, Ernesto
Freel Meyers, Caren L.
Prigge, Sean T.
description Summary Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox‐gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox‐dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways. Malaria parasites rely on scavenging the enzyme cofactor lipoate from their human host. Scavenged lipoate is attached to proteins in the parasite mitochondrion using two different mechanisms that differ based on the redox state of the lipoate substrate. Oxidized lipoate is attached to the H‐protein by the lipoate ligase LipL1. Reduced lipoate is adenylated by LipL1 and subsequently transferred to BCDH and KDH by the lipoyl transferase LipL2.
doi_str_mv 10.1111/mmi.13776
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5653438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953793043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-f9591ead7aebbfc39483cc31f2d3420ba6995784ef30de76a294e0704cbcd84a3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9lpd-Ack4KYupk3mZDKTjVAufhRa6kLBXcgkZ7wpyeQ6mamMv97orUUFz-YszsPDe3gJec7ZKS9zFqM_5dC28gHZcJBNVaume0g2TDWsgq7-fESe5HzDGAcm4TE5qrsOZMvEhlyf0zHdYqDB75OZkZp5NnYXcZwpjt_XiNRnmndmQkf7lX4IJsfk_BKpGR3d7oKJq_OG5j1aj_kpeTSYkPHZ3T4mn96--bh9X11ev7vYnl9WVgiQ1aAaxdG41mDfDxaU6MBa4EPtQNSsN1Kppu0EDsActtLUSiAriW1vXScMHJPXB-9-6SM6W_JOJuj95KOZVp2M139fRr_TX9KtbmQDAroiOLkTTOnrgnnW0WeLIZgR05I1V1BzqWrGCvryH_QmLdNY3itUA60CJqBQrw6UnVLOEw73YTjTP2vSpSb9q6bCvvgz_T35u5cCnB2Abz7g-n-Tvrq6OCh_AD_YnTE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953793043</pqid></control><display><type>article</type><title>A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Afanador, Gustavo A. ; Guerra, Alfredo J. ; Swift, Russell P. ; Rodriguez, Ryan E. ; Bartee, David ; Matthews, Krista A. ; Schön, Arne ; Freire, Ernesto ; Freel Meyers, Caren L. ; Prigge, Sean T.</creator><creatorcontrib>Afanador, Gustavo A. ; Guerra, Alfredo J. ; Swift, Russell P. ; Rodriguez, Ryan E. ; Bartee, David ; Matthews, Krista A. ; Schön, Arne ; Freire, Ernesto ; Freel Meyers, Caren L. ; Prigge, Sean T.</creatorcontrib><description>Summary Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox‐gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox‐dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways. Malaria parasites rely on scavenging the enzyme cofactor lipoate from their human host. Scavenged lipoate is attached to proteins in the parasite mitochondrion using two different mechanisms that differ based on the redox state of the lipoate substrate. Oxidized lipoate is attached to the H‐protein by the lipoate ligase LipL1. Reduced lipoate is adenylated by LipL1 and subsequently transferred to BCDH and KDH by the lipoyl transferase LipL2.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13776</identifier><identifier>PMID: 28836704</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Attachment ; Bacteria ; Chlamydia ; Chlamydia - metabolism ; Chlamydia trachomatis ; Enzymes ; Lipoylation - genetics ; Lipoylation - physiology ; Malaria ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; Nucleotidyltransferases ; Oxidation-Reduction ; Oxidative metabolism ; Parasites ; Peptide Synthases - genetics ; Phylogeny ; Plasmodium - metabolism ; Plasmodium falciparum ; Plasmodium falciparum - genetics ; Proteins ; Protozoan Proteins - metabolism ; Redox properties ; Sequence Alignment ; Sexually transmitted diseases ; STD ; Vector-borne diseases</subject><ispartof>Molecular microbiology, 2017-11, Vol.106 (3), p.439-451</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-f9591ead7aebbfc39483cc31f2d3420ba6995784ef30de76a294e0704cbcd84a3</citedby><cites>FETCH-LOGICAL-c4436-f9591ead7aebbfc39483cc31f2d3420ba6995784ef30de76a294e0704cbcd84a3</cites><orcidid>0000-0001-9684-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.13776$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.13776$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28836704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afanador, Gustavo A.</creatorcontrib><creatorcontrib>Guerra, Alfredo J.</creatorcontrib><creatorcontrib>Swift, Russell P.</creatorcontrib><creatorcontrib>Rodriguez, Ryan E.</creatorcontrib><creatorcontrib>Bartee, David</creatorcontrib><creatorcontrib>Matthews, Krista A.</creatorcontrib><creatorcontrib>Schön, Arne</creatorcontrib><creatorcontrib>Freire, Ernesto</creatorcontrib><creatorcontrib>Freel Meyers, Caren L.</creatorcontrib><creatorcontrib>Prigge, Sean T.</creatorcontrib><title>A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox‐gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox‐dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways. Malaria parasites rely on scavenging the enzyme cofactor lipoate from their human host. Scavenged lipoate is attached to proteins in the parasite mitochondrion using two different mechanisms that differ based on the redox state of the lipoate substrate. Oxidized lipoate is attached to the H‐protein by the lipoate ligase LipL1. Reduced lipoate is adenylated by LipL1 and subsequently transferred to BCDH and KDH by the lipoyl transferase LipL2.</description><subject>Attachment</subject><subject>Bacteria</subject><subject>Chlamydia</subject><subject>Chlamydia - metabolism</subject><subject>Chlamydia trachomatis</subject><subject>Enzymes</subject><subject>Lipoylation - genetics</subject><subject>Lipoylation - physiology</subject><subject>Malaria</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Nucleotidyltransferases</subject><subject>Oxidation-Reduction</subject><subject>Oxidative metabolism</subject><subject>Parasites</subject><subject>Peptide Synthases - genetics</subject><subject>Phylogeny</subject><subject>Plasmodium - metabolism</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - genetics</subject><subject>Proteins</subject><subject>Protozoan Proteins - metabolism</subject><subject>Redox properties</subject><subject>Sequence Alignment</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Vector-borne diseases</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoMo9lpd-Ack4KYupk3mZDKTjVAufhRa6kLBXcgkZ7wpyeQ6mamMv97orUUFz-YszsPDe3gJec7ZKS9zFqM_5dC28gHZcJBNVaume0g2TDWsgq7-fESe5HzDGAcm4TE5qrsOZMvEhlyf0zHdYqDB75OZkZp5NnYXcZwpjt_XiNRnmndmQkf7lX4IJsfk_BKpGR3d7oKJq_OG5j1aj_kpeTSYkPHZ3T4mn96--bh9X11ev7vYnl9WVgiQ1aAaxdG41mDfDxaU6MBa4EPtQNSsN1Kppu0EDsActtLUSiAriW1vXScMHJPXB-9-6SM6W_JOJuj95KOZVp2M139fRr_TX9KtbmQDAroiOLkTTOnrgnnW0WeLIZgR05I1V1BzqWrGCvryH_QmLdNY3itUA60CJqBQrw6UnVLOEw73YTjTP2vSpSb9q6bCvvgz_T35u5cCnB2Abz7g-n-Tvrq6OCh_AD_YnTE</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Afanador, Gustavo A.</creator><creator>Guerra, Alfredo J.</creator><creator>Swift, Russell P.</creator><creator>Rodriguez, Ryan E.</creator><creator>Bartee, David</creator><creator>Matthews, Krista A.</creator><creator>Schön, Arne</creator><creator>Freire, Ernesto</creator><creator>Freel Meyers, Caren L.</creator><creator>Prigge, Sean T.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9684-1733</orcidid></search><sort><creationdate>201711</creationdate><title>A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species</title><author>Afanador, Gustavo A. ; Guerra, Alfredo J. ; Swift, Russell P. ; Rodriguez, Ryan E. ; Bartee, David ; Matthews, Krista A. ; Schön, Arne ; Freire, Ernesto ; Freel Meyers, Caren L. ; Prigge, Sean T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-f9591ead7aebbfc39483cc31f2d3420ba6995784ef30de76a294e0704cbcd84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attachment</topic><topic>Bacteria</topic><topic>Chlamydia</topic><topic>Chlamydia - metabolism</topic><topic>Chlamydia trachomatis</topic><topic>Enzymes</topic><topic>Lipoylation - genetics</topic><topic>Lipoylation - physiology</topic><topic>Malaria</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Nucleotidyltransferases</topic><topic>Oxidation-Reduction</topic><topic>Oxidative metabolism</topic><topic>Parasites</topic><topic>Peptide Synthases - genetics</topic><topic>Phylogeny</topic><topic>Plasmodium - metabolism</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - genetics</topic><topic>Proteins</topic><topic>Protozoan Proteins - metabolism</topic><topic>Redox properties</topic><topic>Sequence Alignment</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afanador, Gustavo A.</creatorcontrib><creatorcontrib>Guerra, Alfredo J.</creatorcontrib><creatorcontrib>Swift, Russell P.</creatorcontrib><creatorcontrib>Rodriguez, Ryan E.</creatorcontrib><creatorcontrib>Bartee, David</creatorcontrib><creatorcontrib>Matthews, Krista A.</creatorcontrib><creatorcontrib>Schön, Arne</creatorcontrib><creatorcontrib>Freire, Ernesto</creatorcontrib><creatorcontrib>Freel Meyers, Caren L.</creatorcontrib><creatorcontrib>Prigge, Sean T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afanador, Gustavo A.</au><au>Guerra, Alfredo J.</au><au>Swift, Russell P.</au><au>Rodriguez, Ryan E.</au><au>Bartee, David</au><au>Matthews, Krista A.</au><au>Schön, Arne</au><au>Freire, Ernesto</au><au>Freel Meyers, Caren L.</au><au>Prigge, Sean T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>106</volume><issue>3</issue><spage>439</spage><epage>451</epage><pages>439-451</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox‐gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox‐dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways. Malaria parasites rely on scavenging the enzyme cofactor lipoate from their human host. Scavenged lipoate is attached to proteins in the parasite mitochondrion using two different mechanisms that differ based on the redox state of the lipoate substrate. Oxidized lipoate is attached to the H‐protein by the lipoate ligase LipL1. Reduced lipoate is adenylated by LipL1 and subsequently transferred to BCDH and KDH by the lipoyl transferase LipL2.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28836704</pmid><doi>10.1111/mmi.13776</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9684-1733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2017-11, Vol.106 (3), p.439-451
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5653438
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Attachment
Bacteria
Chlamydia
Chlamydia - metabolism
Chlamydia trachomatis
Enzymes
Lipoylation - genetics
Lipoylation - physiology
Malaria
Metabolism
Mitochondria
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
Nucleotidyltransferases
Oxidation-Reduction
Oxidative metabolism
Parasites
Peptide Synthases - genetics
Phylogeny
Plasmodium - metabolism
Plasmodium falciparum
Plasmodium falciparum - genetics
Proteins
Protozoan Proteins - metabolism
Redox properties
Sequence Alignment
Sexually transmitted diseases
STD
Vector-borne diseases
title A novel lipoate attachment enzyme is shared by Plasmodium and Chlamydia species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20lipoate%20attachment%20enzyme%20is%20shared%20by%20Plasmodium%20and%20Chlamydia%20species&rft.jtitle=Molecular%20microbiology&rft.au=Afanador,%20Gustavo%20A.&rft.date=2017-11&rft.volume=106&rft.issue=3&rft.spage=439&rft.epage=451&rft.pages=439-451&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13776&rft_dat=%3Cproquest_pubme%3E1953793043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953793043&rft_id=info:pmid/28836704&rfr_iscdi=true