Improved confidence interval for average annual percent change in trend analysis

This paper considers an improved confidence interval for the average annual percent change in trend analysis, which is based on a weighted average of the regression slopes in the segmented line regression model with unknown change points. The performance of the improved confidence interval proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2017-08, Vol.36 (19), p.3059-3074
Hauptverfasser: Kim, Hyune‐Ju, Luo, Jun, Chen, Huann‐Sheng, Green, Don, Buckman, Dennis, Byrne, Jeffrey, Feuer, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3074
container_issue 19
container_start_page 3059
container_title Statistics in medicine
container_volume 36
creator Kim, Hyune‐Ju
Luo, Jun
Chen, Huann‐Sheng
Green, Don
Buckman, Dennis
Byrne, Jeffrey
Feuer, Eric J.
description This paper considers an improved confidence interval for the average annual percent change in trend analysis, which is based on a weighted average of the regression slopes in the segmented line regression model with unknown change points. The performance of the improved confidence interval proposed by Muggeo is examined for various distribution settings, and two new methods are proposed for further improvement. The first method is practically equivalent to the one proposed by Muggeo, but its construction is simpler, and it is modified to use the t‐distribution instead of the standard normal distribution. The second method is based on the empirical distribution of the residuals and the resampling using a uniform random sample, and its satisfactory performance is indicated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.7344
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5652079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916045983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4384-25f0e7e070273e3ea1071b046851e5e0743c2d9945ca1c3a18f51d19e0faab113</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpaTZpIb8gGHrpxemMLFn2JRBCmyyktND2LLTyeKNgS1tpvWX_feTmqy30NDDz8PAOL2PHCKcIwD8kN56qSogXbIHQqhK4bF6yBXClylqhPGCHKd0CIEquXrMD3shGciEX7Oty3MSwo66wwfeuI2-pcH5LcWeGog-xMDuKZk2F8X7Kqw1FS35b2Bvj1zNabCP5Lp_NsE8uvWGvejMkevswj9iPTx-_X1yV118ulxfn16UVVSNKLnsgRaByxooqMggKVyDqRiLJvBeV5V3bCmkN2spg00vssCXojVkhVkfs7N67mVYjdXOmaAa9iW40ca-Dcfrvi3c3eh12WtaSg2qz4P2DIIafE6WtHl2yNAzGU5iSxhZqUUvFIaPv_kFvwxTzwzOFNQjZNtWz0MaQUqT-KQyCnmvSuSY915TRkz_DP4GPvWSgvAd-uYH2_xXpb8vPv4V3_tmcHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916045983</pqid></control><display><type>article</type><title>Improved confidence interval for average annual percent change in trend analysis</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kim, Hyune‐Ju ; Luo, Jun ; Chen, Huann‐Sheng ; Green, Don ; Buckman, Dennis ; Byrne, Jeffrey ; Feuer, Eric J.</creator><creatorcontrib>Kim, Hyune‐Ju ; Luo, Jun ; Chen, Huann‐Sheng ; Green, Don ; Buckman, Dennis ; Byrne, Jeffrey ; Feuer, Eric J.</creatorcontrib><description>This paper considers an improved confidence interval for the average annual percent change in trend analysis, which is based on a weighted average of the regression slopes in the segmented line regression model with unknown change points. The performance of the improved confidence interval proposed by Muggeo is examined for various distribution settings, and two new methods are proposed for further improvement. The first method is practically equivalent to the one proposed by Muggeo, but its construction is simpler, and it is modified to use the t‐distribution instead of the standard normal distribution. The second method is based on the empirical distribution of the residuals and the resampling using a uniform random sample, and its satisfactory performance is indicated by a simulation study. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7344</identifier><identifier>PMID: 28585245</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biometry - methods ; Computer Simulation ; confidence interval ; Confidence Intervals ; empirical distribution ; Epidemiologic Methods ; Humans ; joinpoint ; Medical statistics ; Mortality - trends ; Neoplasms - epidemiology ; Regression Analysis ; resampling ; segmented line regression</subject><ispartof>Statistics in medicine, 2017-08, Vol.36 (19), p.3059-3074</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4384-25f0e7e070273e3ea1071b046851e5e0743c2d9945ca1c3a18f51d19e0faab113</citedby><cites>FETCH-LOGICAL-c4384-25f0e7e070273e3ea1071b046851e5e0743c2d9945ca1c3a18f51d19e0faab113</cites><orcidid>0000-0002-5905-8050 ; 0000-0003-1750-9201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.7344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.7344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28585245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyune‐Ju</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Chen, Huann‐Sheng</creatorcontrib><creatorcontrib>Green, Don</creatorcontrib><creatorcontrib>Buckman, Dennis</creatorcontrib><creatorcontrib>Byrne, Jeffrey</creatorcontrib><creatorcontrib>Feuer, Eric J.</creatorcontrib><title>Improved confidence interval for average annual percent change in trend analysis</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>This paper considers an improved confidence interval for the average annual percent change in trend analysis, which is based on a weighted average of the regression slopes in the segmented line regression model with unknown change points. The performance of the improved confidence interval proposed by Muggeo is examined for various distribution settings, and two new methods are proposed for further improvement. The first method is practically equivalent to the one proposed by Muggeo, but its construction is simpler, and it is modified to use the t‐distribution instead of the standard normal distribution. The second method is based on the empirical distribution of the residuals and the resampling using a uniform random sample, and its satisfactory performance is indicated by a simulation study. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Biometry - methods</subject><subject>Computer Simulation</subject><subject>confidence interval</subject><subject>Confidence Intervals</subject><subject>empirical distribution</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>joinpoint</subject><subject>Medical statistics</subject><subject>Mortality - trends</subject><subject>Neoplasms - epidemiology</subject><subject>Regression Analysis</subject><subject>resampling</subject><subject>segmented line regression</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1r3DAQhkVpaTZpIb8gGHrpxemMLFn2JRBCmyyktND2LLTyeKNgS1tpvWX_feTmqy30NDDz8PAOL2PHCKcIwD8kN56qSogXbIHQqhK4bF6yBXClylqhPGCHKd0CIEquXrMD3shGciEX7Oty3MSwo66wwfeuI2-pcH5LcWeGog-xMDuKZk2F8X7Kqw1FS35b2Bvj1zNabCP5Lp_NsE8uvWGvejMkevswj9iPTx-_X1yV118ulxfn16UVVSNKLnsgRaByxooqMggKVyDqRiLJvBeV5V3bCmkN2spg00vssCXojVkhVkfs7N67mVYjdXOmaAa9iW40ca-Dcfrvi3c3eh12WtaSg2qz4P2DIIafE6WtHl2yNAzGU5iSxhZqUUvFIaPv_kFvwxTzwzOFNQjZNtWz0MaQUqT-KQyCnmvSuSY915TRkz_DP4GPvWSgvAd-uYH2_xXpb8vPv4V3_tmcHA</recordid><startdate>20170830</startdate><enddate>20170830</enddate><creator>Kim, Hyune‐Ju</creator><creator>Luo, Jun</creator><creator>Chen, Huann‐Sheng</creator><creator>Green, Don</creator><creator>Buckman, Dennis</creator><creator>Byrne, Jeffrey</creator><creator>Feuer, Eric J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5905-8050</orcidid><orcidid>https://orcid.org/0000-0003-1750-9201</orcidid></search><sort><creationdate>20170830</creationdate><title>Improved confidence interval for average annual percent change in trend analysis</title><author>Kim, Hyune‐Ju ; Luo, Jun ; Chen, Huann‐Sheng ; Green, Don ; Buckman, Dennis ; Byrne, Jeffrey ; Feuer, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4384-25f0e7e070273e3ea1071b046851e5e0743c2d9945ca1c3a18f51d19e0faab113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biometry - methods</topic><topic>Computer Simulation</topic><topic>confidence interval</topic><topic>Confidence Intervals</topic><topic>empirical distribution</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>joinpoint</topic><topic>Medical statistics</topic><topic>Mortality - trends</topic><topic>Neoplasms - epidemiology</topic><topic>Regression Analysis</topic><topic>resampling</topic><topic>segmented line regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyune‐Ju</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Chen, Huann‐Sheng</creatorcontrib><creatorcontrib>Green, Don</creatorcontrib><creatorcontrib>Buckman, Dennis</creatorcontrib><creatorcontrib>Byrne, Jeffrey</creatorcontrib><creatorcontrib>Feuer, Eric J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyune‐Ju</au><au>Luo, Jun</au><au>Chen, Huann‐Sheng</au><au>Green, Don</au><au>Buckman, Dennis</au><au>Byrne, Jeffrey</au><au>Feuer, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved confidence interval for average annual percent change in trend analysis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2017-08-30</date><risdate>2017</risdate><volume>36</volume><issue>19</issue><spage>3059</spage><epage>3074</epage><pages>3059-3074</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This paper considers an improved confidence interval for the average annual percent change in trend analysis, which is based on a weighted average of the regression slopes in the segmented line regression model with unknown change points. The performance of the improved confidence interval proposed by Muggeo is examined for various distribution settings, and two new methods are proposed for further improvement. The first method is practically equivalent to the one proposed by Muggeo, but its construction is simpler, and it is modified to use the t‐distribution instead of the standard normal distribution. The second method is based on the empirical distribution of the residuals and the resampling using a uniform random sample, and its satisfactory performance is indicated by a simulation study. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28585245</pmid><doi>10.1002/sim.7344</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5905-8050</orcidid><orcidid>https://orcid.org/0000-0003-1750-9201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2017-08, Vol.36 (19), p.3059-3074
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5652079
source MEDLINE; Wiley Online Library All Journals
subjects Biometry - methods
Computer Simulation
confidence interval
Confidence Intervals
empirical distribution
Epidemiologic Methods
Humans
joinpoint
Medical statistics
Mortality - trends
Neoplasms - epidemiology
Regression Analysis
resampling
segmented line regression
title Improved confidence interval for average annual percent change in trend analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20confidence%20interval%20for%20average%20annual%20percent%20change%20in%20trend%20analysis&rft.jtitle=Statistics%20in%20medicine&rft.au=Kim,%20Hyune%E2%80%90Ju&rft.date=2017-08-30&rft.volume=36&rft.issue=19&rft.spage=3059&rft.epage=3074&rft.pages=3059-3074&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7344&rft_dat=%3Cproquest_pubme%3E1916045983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916045983&rft_id=info:pmid/28585245&rfr_iscdi=true