CRISPR-Cas9–based treatment of myocilin-associated glaucoma
Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-10, Vol.114 (42), p.11199-11204 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11204 |
---|---|
container_issue | 42 |
container_start_page | 11199 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Jain, Ankur Zode, Gulab Kasetti, Ramesh B. Ran, Fei A. Yan, Winston Sharma, Tasneem P. Bugge, Kevin Searby, Charles C. Fingert, John H. Zhang, Feng Clark, Abbot F. Sheffield, Val C. |
description | Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease. |
doi_str_mv | 10.1073/pnas.1706193114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488941</jstor_id><sourcerecordid>26488941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qqGwXzj21WqmXXgLj2LE9hyJVK1qQkEB8nK3ZxKFZJfHWTpC48R_4h_wSvFq-ymlGmmdevTMvY1847HHQYn_VU9zjGhRHwbn8wCYckGdKInxkE4BcZ0bmcpt9jnEJAFgY-MS2c4NaoBAT9nN-fnxxdp7NKeLD3f2CoqtmQ3A0dK4fZr6edbe-bNqmzyjG1NGQgOuWxtJ3tMO2amqj232qU3b1-_ByfpSdnP45nv86yUopxZDxXFEyWAisDDglAQwvNEJtqlxxYXJdg16UCypKXZMzQhk0qHShKwV1TmLKDja6q3HRuapM1gK1dhWajsKt9dTY_yd989de-xtbqIJriUngx5NA8P9GFwfbNbF0bUu982O0HKUGVJDeMmXf36FLP4Y-nZcoA4iYqzW1v6HK4GMMrn4xw8Guo7HraOxrNGnj29sbXvjnLBLwdQMs4-DD61xJY1By8QhNFZNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980999267</pqid></control><display><type>article</type><title>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jain, Ankur ; Zode, Gulab ; Kasetti, Ramesh B. ; Ran, Fei A. ; Yan, Winston ; Sharma, Tasneem P. ; Bugge, Kevin ; Searby, Charles C. ; Fingert, John H. ; Zhang, Feng ; Clark, Abbot F. ; Sheffield, Val C.</creator><creatorcontrib>Jain, Ankur ; Zode, Gulab ; Kasetti, Ramesh B. ; Ran, Fei A. ; Yan, Winston ; Sharma, Tasneem P. ; Bugge, Kevin ; Searby, Charles C. ; Fingert, John H. ; Zhang, Feng ; Clark, Abbot F. ; Sheffield, Val C.</creatorcontrib><description>Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1706193114</identifier><identifier>PMID: 28973933</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell culture ; Cell Line ; CRISPR ; CRISPR-Cas Systems ; Cytoskeletal Proteins - genetics ; Damage prevention ; Editing ; Endoplasmic reticulum ; Eye Proteins - genetics ; Feasibility studies ; Gene Editing ; Genetic Therapy - methods ; Genomes ; Glaucoma ; Glaucoma, Open-Angle - genetics ; Glaucoma, Open-Angle - therapy ; Glycoproteins - genetics ; Humans ; In Vitro Techniques ; Intraocular pressure ; Mice ; Mutation ; Organ culture ; Protein folding ; Risk factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (42), p.11199-11204</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 17, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</citedby><cites>FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</cites><orcidid>0000-0003-1926-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28973933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Ankur</creatorcontrib><creatorcontrib>Zode, Gulab</creatorcontrib><creatorcontrib>Kasetti, Ramesh B.</creatorcontrib><creatorcontrib>Ran, Fei A.</creatorcontrib><creatorcontrib>Yan, Winston</creatorcontrib><creatorcontrib>Sharma, Tasneem P.</creatorcontrib><creatorcontrib>Bugge, Kevin</creatorcontrib><creatorcontrib>Searby, Charles C.</creatorcontrib><creatorcontrib>Fingert, John H.</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Clark, Abbot F.</creatorcontrib><creatorcontrib>Sheffield, Val C.</creatorcontrib><title>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Damage prevention</subject><subject>Editing</subject><subject>Endoplasmic reticulum</subject><subject>Eye Proteins - genetics</subject><subject>Feasibility studies</subject><subject>Gene Editing</subject><subject>Genetic Therapy - methods</subject><subject>Genomes</subject><subject>Glaucoma</subject><subject>Glaucoma, Open-Angle - genetics</subject><subject>Glaucoma, Open-Angle - therapy</subject><subject>Glycoproteins - genetics</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Intraocular pressure</subject><subject>Mice</subject><subject>Mutation</subject><subject>Organ culture</subject><subject>Protein folding</subject><subject>Risk factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1P3DAQhq2qqGwXzj21WqmXXgLj2LE9hyJVK1qQkEB8nK3ZxKFZJfHWTpC48R_4h_wSvFq-ymlGmmdevTMvY1847HHQYn_VU9zjGhRHwbn8wCYckGdKInxkE4BcZ0bmcpt9jnEJAFgY-MS2c4NaoBAT9nN-fnxxdp7NKeLD3f2CoqtmQ3A0dK4fZr6edbe-bNqmzyjG1NGQgOuWxtJ3tMO2amqj232qU3b1-_ByfpSdnP45nv86yUopxZDxXFEyWAisDDglAQwvNEJtqlxxYXJdg16UCypKXZMzQhk0qHShKwV1TmLKDja6q3HRuapM1gK1dhWajsKt9dTY_yd989de-xtbqIJriUngx5NA8P9GFwfbNbF0bUu982O0HKUGVJDeMmXf36FLP4Y-nZcoA4iYqzW1v6HK4GMMrn4xw8Guo7HraOxrNGnj29sbXvjnLBLwdQMs4-DD61xJY1By8QhNFZNM</recordid><startdate>20171017</startdate><enddate>20171017</enddate><creator>Jain, Ankur</creator><creator>Zode, Gulab</creator><creator>Kasetti, Ramesh B.</creator><creator>Ran, Fei A.</creator><creator>Yan, Winston</creator><creator>Sharma, Tasneem P.</creator><creator>Bugge, Kevin</creator><creator>Searby, Charles C.</creator><creator>Fingert, John H.</creator><creator>Zhang, Feng</creator><creator>Clark, Abbot F.</creator><creator>Sheffield, Val C.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1926-6389</orcidid></search><sort><creationdate>20171017</creationdate><title>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</title><author>Jain, Ankur ; Zode, Gulab ; Kasetti, Ramesh B. ; Ran, Fei A. ; Yan, Winston ; Sharma, Tasneem P. ; Bugge, Kevin ; Searby, Charles C. ; Fingert, John H. ; Zhang, Feng ; Clark, Abbot F. ; Sheffield, Val C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Damage prevention</topic><topic>Editing</topic><topic>Endoplasmic reticulum</topic><topic>Eye Proteins - genetics</topic><topic>Feasibility studies</topic><topic>Gene Editing</topic><topic>Genetic Therapy - methods</topic><topic>Genomes</topic><topic>Glaucoma</topic><topic>Glaucoma, Open-Angle - genetics</topic><topic>Glaucoma, Open-Angle - therapy</topic><topic>Glycoproteins - genetics</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Intraocular pressure</topic><topic>Mice</topic><topic>Mutation</topic><topic>Organ culture</topic><topic>Protein folding</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Ankur</creatorcontrib><creatorcontrib>Zode, Gulab</creatorcontrib><creatorcontrib>Kasetti, Ramesh B.</creatorcontrib><creatorcontrib>Ran, Fei A.</creatorcontrib><creatorcontrib>Yan, Winston</creatorcontrib><creatorcontrib>Sharma, Tasneem P.</creatorcontrib><creatorcontrib>Bugge, Kevin</creatorcontrib><creatorcontrib>Searby, Charles C.</creatorcontrib><creatorcontrib>Fingert, John H.</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Clark, Abbot F.</creatorcontrib><creatorcontrib>Sheffield, Val C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Ankur</au><au>Zode, Gulab</au><au>Kasetti, Ramesh B.</au><au>Ran, Fei A.</au><au>Yan, Winston</au><au>Sharma, Tasneem P.</au><au>Bugge, Kevin</au><au>Searby, Charles C.</au><au>Fingert, John H.</au><au>Zhang, Feng</au><au>Clark, Abbot F.</au><au>Sheffield, Val C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-10-17</date><risdate>2017</risdate><volume>114</volume><issue>42</issue><spage>11199</spage><epage>11204</epage><pages>11199-11204</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28973933</pmid><doi>10.1073/pnas.1706193114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1926-6389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (42), p.11199-11204 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651749 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cell culture Cell Line CRISPR CRISPR-Cas Systems Cytoskeletal Proteins - genetics Damage prevention Editing Endoplasmic reticulum Eye Proteins - genetics Feasibility studies Gene Editing Genetic Therapy - methods Genomes Glaucoma Glaucoma, Open-Angle - genetics Glaucoma, Open-Angle - therapy Glycoproteins - genetics Humans In Vitro Techniques Intraocular pressure Mice Mutation Organ culture Protein folding Risk factors |
title | CRISPR-Cas9–based treatment of myocilin-associated glaucoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas9%E2%80%93based%20treatment%20of%20myocilin-associated%20glaucoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jain,%20Ankur&rft.date=2017-10-17&rft.volume=114&rft.issue=42&rft.spage=11199&rft.epage=11204&rft.pages=11199-11204&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1706193114&rft_dat=%3Cjstor_pubme%3E26488941%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980999267&rft_id=info:pmid/28973933&rft_jstor_id=26488941&rfr_iscdi=true |