CRISPR-Cas9–based treatment of myocilin-associated glaucoma

Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-10, Vol.114 (42), p.11199-11204
Hauptverfasser: Jain, Ankur, Zode, Gulab, Kasetti, Ramesh B., Ran, Fei A., Yan, Winston, Sharma, Tasneem P., Bugge, Kevin, Searby, Charles C., Fingert, John H., Zhang, Feng, Clark, Abbot F., Sheffield, Val C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11204
container_issue 42
container_start_page 11199
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Jain, Ankur
Zode, Gulab
Kasetti, Ramesh B.
Ran, Fei A.
Yan, Winston
Sharma, Tasneem P.
Bugge, Kevin
Searby, Charles C.
Fingert, John H.
Zhang, Feng
Clark, Abbot F.
Sheffield, Val C.
description Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.
doi_str_mv 10.1073/pnas.1706193114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488941</jstor_id><sourcerecordid>26488941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qqGwXzj21WqmXXgLj2LE9hyJVK1qQkEB8nK3ZxKFZJfHWTpC48R_4h_wSvFq-ymlGmmdevTMvY1847HHQYn_VU9zjGhRHwbn8wCYckGdKInxkE4BcZ0bmcpt9jnEJAFgY-MS2c4NaoBAT9nN-fnxxdp7NKeLD3f2CoqtmQ3A0dK4fZr6edbe-bNqmzyjG1NGQgOuWxtJ3tMO2amqj232qU3b1-_ByfpSdnP45nv86yUopxZDxXFEyWAisDDglAQwvNEJtqlxxYXJdg16UCypKXZMzQhk0qHShKwV1TmLKDja6q3HRuapM1gK1dhWajsKt9dTY_yd989de-xtbqIJriUngx5NA8P9GFwfbNbF0bUu982O0HKUGVJDeMmXf36FLP4Y-nZcoA4iYqzW1v6HK4GMMrn4xw8Guo7HraOxrNGnj29sbXvjnLBLwdQMs4-DD61xJY1By8QhNFZNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980999267</pqid></control><display><type>article</type><title>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jain, Ankur ; Zode, Gulab ; Kasetti, Ramesh B. ; Ran, Fei A. ; Yan, Winston ; Sharma, Tasneem P. ; Bugge, Kevin ; Searby, Charles C. ; Fingert, John H. ; Zhang, Feng ; Clark, Abbot F. ; Sheffield, Val C.</creator><creatorcontrib>Jain, Ankur ; Zode, Gulab ; Kasetti, Ramesh B. ; Ran, Fei A. ; Yan, Winston ; Sharma, Tasneem P. ; Bugge, Kevin ; Searby, Charles C. ; Fingert, John H. ; Zhang, Feng ; Clark, Abbot F. ; Sheffield, Val C.</creatorcontrib><description>Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1706193114</identifier><identifier>PMID: 28973933</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell culture ; Cell Line ; CRISPR ; CRISPR-Cas Systems ; Cytoskeletal Proteins - genetics ; Damage prevention ; Editing ; Endoplasmic reticulum ; Eye Proteins - genetics ; Feasibility studies ; Gene Editing ; Genetic Therapy - methods ; Genomes ; Glaucoma ; Glaucoma, Open-Angle - genetics ; Glaucoma, Open-Angle - therapy ; Glycoproteins - genetics ; Humans ; In Vitro Techniques ; Intraocular pressure ; Mice ; Mutation ; Organ culture ; Protein folding ; Risk factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (42), p.11199-11204</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 17, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</citedby><cites>FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</cites><orcidid>0000-0003-1926-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28973933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Ankur</creatorcontrib><creatorcontrib>Zode, Gulab</creatorcontrib><creatorcontrib>Kasetti, Ramesh B.</creatorcontrib><creatorcontrib>Ran, Fei A.</creatorcontrib><creatorcontrib>Yan, Winston</creatorcontrib><creatorcontrib>Sharma, Tasneem P.</creatorcontrib><creatorcontrib>Bugge, Kevin</creatorcontrib><creatorcontrib>Searby, Charles C.</creatorcontrib><creatorcontrib>Fingert, John H.</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Clark, Abbot F.</creatorcontrib><creatorcontrib>Sheffield, Val C.</creatorcontrib><title>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Damage prevention</subject><subject>Editing</subject><subject>Endoplasmic reticulum</subject><subject>Eye Proteins - genetics</subject><subject>Feasibility studies</subject><subject>Gene Editing</subject><subject>Genetic Therapy - methods</subject><subject>Genomes</subject><subject>Glaucoma</subject><subject>Glaucoma, Open-Angle - genetics</subject><subject>Glaucoma, Open-Angle - therapy</subject><subject>Glycoproteins - genetics</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Intraocular pressure</subject><subject>Mice</subject><subject>Mutation</subject><subject>Organ culture</subject><subject>Protein folding</subject><subject>Risk factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1P3DAQhq2qqGwXzj21WqmXXgLj2LE9hyJVK1qQkEB8nK3ZxKFZJfHWTpC48R_4h_wSvFq-ymlGmmdevTMvY1847HHQYn_VU9zjGhRHwbn8wCYckGdKInxkE4BcZ0bmcpt9jnEJAFgY-MS2c4NaoBAT9nN-fnxxdp7NKeLD3f2CoqtmQ3A0dK4fZr6edbe-bNqmzyjG1NGQgOuWxtJ3tMO2amqj232qU3b1-_ByfpSdnP45nv86yUopxZDxXFEyWAisDDglAQwvNEJtqlxxYXJdg16UCypKXZMzQhk0qHShKwV1TmLKDja6q3HRuapM1gK1dhWajsKt9dTY_yd989de-xtbqIJriUngx5NA8P9GFwfbNbF0bUu982O0HKUGVJDeMmXf36FLP4Y-nZcoA4iYqzW1v6HK4GMMrn4xw8Guo7HraOxrNGnj29sbXvjnLBLwdQMs4-DD61xJY1By8QhNFZNM</recordid><startdate>20171017</startdate><enddate>20171017</enddate><creator>Jain, Ankur</creator><creator>Zode, Gulab</creator><creator>Kasetti, Ramesh B.</creator><creator>Ran, Fei A.</creator><creator>Yan, Winston</creator><creator>Sharma, Tasneem P.</creator><creator>Bugge, Kevin</creator><creator>Searby, Charles C.</creator><creator>Fingert, John H.</creator><creator>Zhang, Feng</creator><creator>Clark, Abbot F.</creator><creator>Sheffield, Val C.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1926-6389</orcidid></search><sort><creationdate>20171017</creationdate><title>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</title><author>Jain, Ankur ; Zode, Gulab ; Kasetti, Ramesh B. ; Ran, Fei A. ; Yan, Winston ; Sharma, Tasneem P. ; Bugge, Kevin ; Searby, Charles C. ; Fingert, John H. ; Zhang, Feng ; Clark, Abbot F. ; Sheffield, Val C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-126a193539d80e6400815790f8d2613827f07bcba5c7fae83689896757d60f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Damage prevention</topic><topic>Editing</topic><topic>Endoplasmic reticulum</topic><topic>Eye Proteins - genetics</topic><topic>Feasibility studies</topic><topic>Gene Editing</topic><topic>Genetic Therapy - methods</topic><topic>Genomes</topic><topic>Glaucoma</topic><topic>Glaucoma, Open-Angle - genetics</topic><topic>Glaucoma, Open-Angle - therapy</topic><topic>Glycoproteins - genetics</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Intraocular pressure</topic><topic>Mice</topic><topic>Mutation</topic><topic>Organ culture</topic><topic>Protein folding</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Ankur</creatorcontrib><creatorcontrib>Zode, Gulab</creatorcontrib><creatorcontrib>Kasetti, Ramesh B.</creatorcontrib><creatorcontrib>Ran, Fei A.</creatorcontrib><creatorcontrib>Yan, Winston</creatorcontrib><creatorcontrib>Sharma, Tasneem P.</creatorcontrib><creatorcontrib>Bugge, Kevin</creatorcontrib><creatorcontrib>Searby, Charles C.</creatorcontrib><creatorcontrib>Fingert, John H.</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Clark, Abbot F.</creatorcontrib><creatorcontrib>Sheffield, Val C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Ankur</au><au>Zode, Gulab</au><au>Kasetti, Ramesh B.</au><au>Ran, Fei A.</au><au>Yan, Winston</au><au>Sharma, Tasneem P.</au><au>Bugge, Kevin</au><au>Searby, Charles C.</au><au>Fingert, John H.</au><au>Zhang, Feng</au><au>Clark, Abbot F.</au><au>Sheffield, Val C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas9–based treatment of myocilin-associated glaucoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-10-17</date><risdate>2017</risdate><volume>114</volume><issue>42</issue><spage>11199</spage><epage>11204</epage><pages>11199-11204</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9–mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28973933</pmid><doi>10.1073/pnas.1706193114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1926-6389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-10, Vol.114 (42), p.11199-11204
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651749
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cell culture
Cell Line
CRISPR
CRISPR-Cas Systems
Cytoskeletal Proteins - genetics
Damage prevention
Editing
Endoplasmic reticulum
Eye Proteins - genetics
Feasibility studies
Gene Editing
Genetic Therapy - methods
Genomes
Glaucoma
Glaucoma, Open-Angle - genetics
Glaucoma, Open-Angle - therapy
Glycoproteins - genetics
Humans
In Vitro Techniques
Intraocular pressure
Mice
Mutation
Organ culture
Protein folding
Risk factors
title CRISPR-Cas9–based treatment of myocilin-associated glaucoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas9%E2%80%93based%20treatment%20of%20myocilin-associated%20glaucoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jain,%20Ankur&rft.date=2017-10-17&rft.volume=114&rft.issue=42&rft.spage=11199&rft.epage=11204&rft.pages=11199-11204&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1706193114&rft_dat=%3Cjstor_pubme%3E26488941%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980999267&rft_id=info:pmid/28973933&rft_jstor_id=26488941&rfr_iscdi=true