Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments

We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine ( Pinus thunbergii ) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mycorrhiza 2017-11, Vol.27 (8), p.823-830
Hauptverfasser: Shi, Liang, Wang, Jie, Liu, Binhao, Nara, Kazuhide, Lian, Chunlan, Shen, Zhenguo, Xia, Yan, Chen, Yahua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 8
container_start_page 823
container_title Mycorrhiza
container_volume 27
creator Shi, Liang
Wang, Jie
Liu, Binhao
Nara, Kazuhide
Lian, Chunlan
Shen, Zhenguo
Xia, Yan
Chen, Yahua
description We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine ( Pinus thunbergii ) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO 2 concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m −2  s −1 , significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m −2  s −1 ). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO 2 level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.
doi_str_mv 10.1007/s00572-017-0795-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5645441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951917867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</originalsourceid><addsrcrecordid>eNqFks1u1TAQhSMEopfCA7BBltiwCYz_kniDhKryI1WCBawtx57kukrsYCdVy2PwxPjqlqogIVa2fL45Y3tOVT2n8JoCtG8ygGxZDbStoVWybh9UOyo4q2mn4GG1AyWgbngDJ9WTnC-hgA2nj6sT1nUCuOx21c9zu8b5xsaU9v6HmciwhdGThG6zSNY9ksmP-5XYOC8Ysll9DGSJPqzEBEeWFOe4IrEm9UUY_PWRiAP54sOWi8MWekyj9yQjusmHsRxGYpxZ1sMm741DguHKpxhmDGt-Wj0azJTx2e16Wn17f_717GN98fnDp7N3F7WVwNe6Bdrx3jRSKmCNk8oNYF3bSMWsaXq0jreOYy8dG5QVwyCUMthywxqhhGH8tHp79F22fkZnS-9kJr0kP5t0o6Px-k8l-L0e45WWjZBC0GLw6tYgxe8b5lXPPlucJhMwblkzoMAYKKn-i1LFWSdYGWdBX_6FXsYthfIThZJU0bZrDhQ9UjbFnBMOd_emoA_h0Mdw6DJzfQiHPtS8uP_gu4rfaSgAOwK5SGHEdK_1P11_AWjwyNc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951917867</pqid></control><display><type>article</type><title>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Shi, Liang ; Wang, Jie ; Liu, Binhao ; Nara, Kazuhide ; Lian, Chunlan ; Shen, Zhenguo ; Xia, Yan ; Chen, Yahua</creator><creatorcontrib>Shi, Liang ; Wang, Jie ; Liu, Binhao ; Nara, Kazuhide ; Lian, Chunlan ; Shen, Zhenguo ; Xia, Yan ; Chen, Yahua</creatorcontrib><description>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine ( Pinus thunbergii ) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO 2 concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m −2  s −1 , significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m −2  s −1 ). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO 2 level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</description><identifier>ISSN: 0940-6360</identifier><identifier>EISSN: 1432-1890</identifier><identifier>DOI: 10.1007/s00572-017-0795-7</identifier><identifier>PMID: 28840358</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation, Physiological ; Agriculture ; Basidiomycota - physiology ; biomass ; Biomedical and Life Sciences ; Carbon Cycle ; Carbon dioxide ; carbon dioxide fixation ; Carbon fixation ; Cenococcum geophilum ; Chlorophyll ; Compensation ; Competitiveness ; Ecology ; ectomycorrhizae ; Ectomycorrhizas ; Environment ; Forestry ; Fungi ; Laccaria amethystea ; Life Sciences ; Light ; Light intensity ; Luminous intensity ; Microbiology ; Moisture content ; Mycorrhizae - physiology ; mycorrhizal fungi ; Original Paper ; Parameter estimation ; Phosphorus ; Photons ; Photosynthesis ; Pine ; Pine needles ; Pinus - growth &amp; development ; Pinus - microbiology ; Pinus - physiology ; Pinus thunbergii ; Pisolithus ; Plant Sciences ; Seedlings ; Seedlings - growth &amp; development ; Seedlings - microbiology ; Seedlings - physiology ; shade ; Survival ; Symbionts ; Water content</subject><ispartof>Mycorrhiza, 2017-11, Vol.27 (8), p.823-830</ispartof><rights>The Author(s) 2017</rights><rights>Mycorrhiza is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</citedby><cites>FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00572-017-0795-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00572-017-0795-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28840358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Liu, Binhao</creatorcontrib><creatorcontrib>Nara, Kazuhide</creatorcontrib><creatorcontrib>Lian, Chunlan</creatorcontrib><creatorcontrib>Shen, Zhenguo</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Chen, Yahua</creatorcontrib><title>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</title><title>Mycorrhiza</title><addtitle>Mycorrhiza</addtitle><addtitle>Mycorrhiza</addtitle><description>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine ( Pinus thunbergii ) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO 2 concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m −2  s −1 , significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m −2  s −1 ). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO 2 level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</description><subject>Adaptation, Physiological</subject><subject>Agriculture</subject><subject>Basidiomycota - physiology</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon Cycle</subject><subject>Carbon dioxide</subject><subject>carbon dioxide fixation</subject><subject>Carbon fixation</subject><subject>Cenococcum geophilum</subject><subject>Chlorophyll</subject><subject>Compensation</subject><subject>Competitiveness</subject><subject>Ecology</subject><subject>ectomycorrhizae</subject><subject>Ectomycorrhizas</subject><subject>Environment</subject><subject>Forestry</subject><subject>Fungi</subject><subject>Laccaria amethystea</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Microbiology</subject><subject>Moisture content</subject><subject>Mycorrhizae - physiology</subject><subject>mycorrhizal fungi</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Phosphorus</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Pine</subject><subject>Pine needles</subject><subject>Pinus - growth &amp; development</subject><subject>Pinus - microbiology</subject><subject>Pinus - physiology</subject><subject>Pinus thunbergii</subject><subject>Pisolithus</subject><subject>Plant Sciences</subject><subject>Seedlings</subject><subject>Seedlings - growth &amp; development</subject><subject>Seedlings - microbiology</subject><subject>Seedlings - physiology</subject><subject>shade</subject><subject>Survival</subject><subject>Symbionts</subject><subject>Water content</subject><issn>0940-6360</issn><issn>1432-1890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFks1u1TAQhSMEopfCA7BBltiwCYz_kniDhKryI1WCBawtx57kukrsYCdVy2PwxPjqlqogIVa2fL45Y3tOVT2n8JoCtG8ygGxZDbStoVWybh9UOyo4q2mn4GG1AyWgbngDJ9WTnC-hgA2nj6sT1nUCuOx21c9zu8b5xsaU9v6HmciwhdGThG6zSNY9ksmP-5XYOC8Ysll9DGSJPqzEBEeWFOe4IrEm9UUY_PWRiAP54sOWi8MWekyj9yQjusmHsRxGYpxZ1sMm741DguHKpxhmDGt-Wj0azJTx2e16Wn17f_717GN98fnDp7N3F7WVwNe6Bdrx3jRSKmCNk8oNYF3bSMWsaXq0jreOYy8dG5QVwyCUMthywxqhhGH8tHp79F22fkZnS-9kJr0kP5t0o6Px-k8l-L0e45WWjZBC0GLw6tYgxe8b5lXPPlucJhMwblkzoMAYKKn-i1LFWSdYGWdBX_6FXsYthfIThZJU0bZrDhQ9UjbFnBMOd_emoA_h0Mdw6DJzfQiHPtS8uP_gu4rfaSgAOwK5SGHEdK_1P11_AWjwyNc</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Shi, Liang</creator><creator>Wang, Jie</creator><creator>Liu, Binhao</creator><creator>Nara, Kazuhide</creator><creator>Lian, Chunlan</creator><creator>Shen, Zhenguo</creator><creator>Xia, Yan</creator><creator>Chen, Yahua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</title><author>Shi, Liang ; Wang, Jie ; Liu, Binhao ; Nara, Kazuhide ; Lian, Chunlan ; Shen, Zhenguo ; Xia, Yan ; Chen, Yahua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological</topic><topic>Agriculture</topic><topic>Basidiomycota - physiology</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon Cycle</topic><topic>Carbon dioxide</topic><topic>carbon dioxide fixation</topic><topic>Carbon fixation</topic><topic>Cenococcum geophilum</topic><topic>Chlorophyll</topic><topic>Compensation</topic><topic>Competitiveness</topic><topic>Ecology</topic><topic>ectomycorrhizae</topic><topic>Ectomycorrhizas</topic><topic>Environment</topic><topic>Forestry</topic><topic>Fungi</topic><topic>Laccaria amethystea</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Microbiology</topic><topic>Moisture content</topic><topic>Mycorrhizae - physiology</topic><topic>mycorrhizal fungi</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Phosphorus</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Pine</topic><topic>Pine needles</topic><topic>Pinus - growth &amp; development</topic><topic>Pinus - microbiology</topic><topic>Pinus - physiology</topic><topic>Pinus thunbergii</topic><topic>Pisolithus</topic><topic>Plant Sciences</topic><topic>Seedlings</topic><topic>Seedlings - growth &amp; development</topic><topic>Seedlings - microbiology</topic><topic>Seedlings - physiology</topic><topic>shade</topic><topic>Survival</topic><topic>Symbionts</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Liu, Binhao</creatorcontrib><creatorcontrib>Nara, Kazuhide</creatorcontrib><creatorcontrib>Lian, Chunlan</creatorcontrib><creatorcontrib>Shen, Zhenguo</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Chen, Yahua</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mycorrhiza</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Liang</au><au>Wang, Jie</au><au>Liu, Binhao</au><au>Nara, Kazuhide</au><au>Lian, Chunlan</au><au>Shen, Zhenguo</au><au>Xia, Yan</au><au>Chen, Yahua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</atitle><jtitle>Mycorrhiza</jtitle><stitle>Mycorrhiza</stitle><addtitle>Mycorrhiza</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>27</volume><issue>8</issue><spage>823</spage><epage>830</epage><pages>823-830</pages><issn>0940-6360</issn><eissn>1432-1890</eissn><abstract>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine ( Pinus thunbergii ) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of P. thunbergii seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of P. thunbergii seedlings under low-light condition by reducing the LCP of seedlings. At a CO 2 concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m −2  s −1 , significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m −2  s −1 ). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO 2 level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings; Pisolithus sp. (Pt)- and Laccaria amethystea (La)-mycorrhizal seedlings had significantly lower Pn than Cenococcum geophilum (Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of P. thunbergii seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28840358</pmid><doi>10.1007/s00572-017-0795-7</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0940-6360
ispartof Mycorrhiza, 2017-11, Vol.27 (8), p.823-830
issn 0940-6360
1432-1890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5645441
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adaptation, Physiological
Agriculture
Basidiomycota - physiology
biomass
Biomedical and Life Sciences
Carbon Cycle
Carbon dioxide
carbon dioxide fixation
Carbon fixation
Cenococcum geophilum
Chlorophyll
Compensation
Competitiveness
Ecology
ectomycorrhizae
Ectomycorrhizas
Environment
Forestry
Fungi
Laccaria amethystea
Life Sciences
Light
Light intensity
Luminous intensity
Microbiology
Moisture content
Mycorrhizae - physiology
mycorrhizal fungi
Original Paper
Parameter estimation
Phosphorus
Photons
Photosynthesis
Pine
Pine needles
Pinus - growth & development
Pinus - microbiology
Pinus - physiology
Pinus thunbergii
Pisolithus
Plant Sciences
Seedlings
Seedlings - growth & development
Seedlings - microbiology
Seedlings - physiology
shade
Survival
Symbionts
Water content
title Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ectomycorrhizal%20fungi%20reduce%20the%20light%20compensation%20point%20and%20promote%20carbon%20fixation%20of%20Pinus%20thunbergii%20seedlings%20to%20adapt%20to%20shade%20environments&rft.jtitle=Mycorrhiza&rft.au=Shi,%20Liang&rft.date=2017-11-01&rft.volume=27&rft.issue=8&rft.spage=823&rft.epage=830&rft.pages=823-830&rft.issn=0940-6360&rft.eissn=1432-1890&rft_id=info:doi/10.1007/s00572-017-0795-7&rft_dat=%3Cproquest_pubme%3E1951917867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951917867&rft_id=info:pmid/28840358&rfr_iscdi=true