Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments
We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine ( Pinus thunbergii ) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentr...
Gespeichert in:
Veröffentlicht in: | Mycorrhiza 2017-11, Vol.27 (8), p.823-830 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 8 |
container_start_page | 823 |
container_title | Mycorrhiza |
container_volume | 27 |
creator | Shi, Liang Wang, Jie Liu, Binhao Nara, Kazuhide Lian, Chunlan Shen, Zhenguo Xia, Yan Chen, Yahua |
description | We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (
Pinus thunbergii
) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of
P. thunbergii
seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of
P. thunbergii
seedlings under low-light condition by reducing the LCP of seedlings. At a CO
2
concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m
−2
s
−1
, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m
−2
s
−1
). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO
2
level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings;
Pisolithus
sp. (Pt)- and
Laccaria amethystea
(La)-mycorrhizal seedlings had significantly lower Pn than
Cenococcum geophilum
(Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of
P. thunbergii
seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light. |
doi_str_mv | 10.1007/s00572-017-0795-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5645441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951917867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</originalsourceid><addsrcrecordid>eNqFks1u1TAQhSMEopfCA7BBltiwCYz_kniDhKryI1WCBawtx57kukrsYCdVy2PwxPjqlqogIVa2fL45Y3tOVT2n8JoCtG8ygGxZDbStoVWybh9UOyo4q2mn4GG1AyWgbngDJ9WTnC-hgA2nj6sT1nUCuOx21c9zu8b5xsaU9v6HmciwhdGThG6zSNY9ksmP-5XYOC8Ysll9DGSJPqzEBEeWFOe4IrEm9UUY_PWRiAP54sOWi8MWekyj9yQjusmHsRxGYpxZ1sMm741DguHKpxhmDGt-Wj0azJTx2e16Wn17f_717GN98fnDp7N3F7WVwNe6Bdrx3jRSKmCNk8oNYF3bSMWsaXq0jreOYy8dG5QVwyCUMthywxqhhGH8tHp79F22fkZnS-9kJr0kP5t0o6Px-k8l-L0e45WWjZBC0GLw6tYgxe8b5lXPPlucJhMwblkzoMAYKKn-i1LFWSdYGWdBX_6FXsYthfIThZJU0bZrDhQ9UjbFnBMOd_emoA_h0Mdw6DJzfQiHPtS8uP_gu4rfaSgAOwK5SGHEdK_1P11_AWjwyNc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951917867</pqid></control><display><type>article</type><title>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Shi, Liang ; Wang, Jie ; Liu, Binhao ; Nara, Kazuhide ; Lian, Chunlan ; Shen, Zhenguo ; Xia, Yan ; Chen, Yahua</creator><creatorcontrib>Shi, Liang ; Wang, Jie ; Liu, Binhao ; Nara, Kazuhide ; Lian, Chunlan ; Shen, Zhenguo ; Xia, Yan ; Chen, Yahua</creatorcontrib><description>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (
Pinus thunbergii
) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of
P. thunbergii
seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of
P. thunbergii
seedlings under low-light condition by reducing the LCP of seedlings. At a CO
2
concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m
−2
s
−1
, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m
−2
s
−1
). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO
2
level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings;
Pisolithus
sp. (Pt)- and
Laccaria amethystea
(La)-mycorrhizal seedlings had significantly lower Pn than
Cenococcum geophilum
(Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of
P. thunbergii
seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</description><identifier>ISSN: 0940-6360</identifier><identifier>EISSN: 1432-1890</identifier><identifier>DOI: 10.1007/s00572-017-0795-7</identifier><identifier>PMID: 28840358</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation, Physiological ; Agriculture ; Basidiomycota - physiology ; biomass ; Biomedical and Life Sciences ; Carbon Cycle ; Carbon dioxide ; carbon dioxide fixation ; Carbon fixation ; Cenococcum geophilum ; Chlorophyll ; Compensation ; Competitiveness ; Ecology ; ectomycorrhizae ; Ectomycorrhizas ; Environment ; Forestry ; Fungi ; Laccaria amethystea ; Life Sciences ; Light ; Light intensity ; Luminous intensity ; Microbiology ; Moisture content ; Mycorrhizae - physiology ; mycorrhizal fungi ; Original Paper ; Parameter estimation ; Phosphorus ; Photons ; Photosynthesis ; Pine ; Pine needles ; Pinus - growth & development ; Pinus - microbiology ; Pinus - physiology ; Pinus thunbergii ; Pisolithus ; Plant Sciences ; Seedlings ; Seedlings - growth & development ; Seedlings - microbiology ; Seedlings - physiology ; shade ; Survival ; Symbionts ; Water content</subject><ispartof>Mycorrhiza, 2017-11, Vol.27 (8), p.823-830</ispartof><rights>The Author(s) 2017</rights><rights>Mycorrhiza is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</citedby><cites>FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00572-017-0795-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00572-017-0795-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28840358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Liu, Binhao</creatorcontrib><creatorcontrib>Nara, Kazuhide</creatorcontrib><creatorcontrib>Lian, Chunlan</creatorcontrib><creatorcontrib>Shen, Zhenguo</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Chen, Yahua</creatorcontrib><title>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</title><title>Mycorrhiza</title><addtitle>Mycorrhiza</addtitle><addtitle>Mycorrhiza</addtitle><description>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (
Pinus thunbergii
) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of
P. thunbergii
seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of
P. thunbergii
seedlings under low-light condition by reducing the LCP of seedlings. At a CO
2
concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m
−2
s
−1
, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m
−2
s
−1
). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO
2
level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings;
Pisolithus
sp. (Pt)- and
Laccaria amethystea
(La)-mycorrhizal seedlings had significantly lower Pn than
Cenococcum geophilum
(Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of
P. thunbergii
seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</description><subject>Adaptation, Physiological</subject><subject>Agriculture</subject><subject>Basidiomycota - physiology</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon Cycle</subject><subject>Carbon dioxide</subject><subject>carbon dioxide fixation</subject><subject>Carbon fixation</subject><subject>Cenococcum geophilum</subject><subject>Chlorophyll</subject><subject>Compensation</subject><subject>Competitiveness</subject><subject>Ecology</subject><subject>ectomycorrhizae</subject><subject>Ectomycorrhizas</subject><subject>Environment</subject><subject>Forestry</subject><subject>Fungi</subject><subject>Laccaria amethystea</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Microbiology</subject><subject>Moisture content</subject><subject>Mycorrhizae - physiology</subject><subject>mycorrhizal fungi</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Phosphorus</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Pine</subject><subject>Pine needles</subject><subject>Pinus - growth & development</subject><subject>Pinus - microbiology</subject><subject>Pinus - physiology</subject><subject>Pinus thunbergii</subject><subject>Pisolithus</subject><subject>Plant Sciences</subject><subject>Seedlings</subject><subject>Seedlings - growth & development</subject><subject>Seedlings - microbiology</subject><subject>Seedlings - physiology</subject><subject>shade</subject><subject>Survival</subject><subject>Symbionts</subject><subject>Water content</subject><issn>0940-6360</issn><issn>1432-1890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFks1u1TAQhSMEopfCA7BBltiwCYz_kniDhKryI1WCBawtx57kukrsYCdVy2PwxPjqlqogIVa2fL45Y3tOVT2n8JoCtG8ygGxZDbStoVWybh9UOyo4q2mn4GG1AyWgbngDJ9WTnC-hgA2nj6sT1nUCuOx21c9zu8b5xsaU9v6HmciwhdGThG6zSNY9ksmP-5XYOC8Ysll9DGSJPqzEBEeWFOe4IrEm9UUY_PWRiAP54sOWi8MWekyj9yQjusmHsRxGYpxZ1sMm741DguHKpxhmDGt-Wj0azJTx2e16Wn17f_717GN98fnDp7N3F7WVwNe6Bdrx3jRSKmCNk8oNYF3bSMWsaXq0jreOYy8dG5QVwyCUMthywxqhhGH8tHp79F22fkZnS-9kJr0kP5t0o6Px-k8l-L0e45WWjZBC0GLw6tYgxe8b5lXPPlucJhMwblkzoMAYKKn-i1LFWSdYGWdBX_6FXsYthfIThZJU0bZrDhQ9UjbFnBMOd_emoA_h0Mdw6DJzfQiHPtS8uP_gu4rfaSgAOwK5SGHEdK_1P11_AWjwyNc</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Shi, Liang</creator><creator>Wang, Jie</creator><creator>Liu, Binhao</creator><creator>Nara, Kazuhide</creator><creator>Lian, Chunlan</creator><creator>Shen, Zhenguo</creator><creator>Xia, Yan</creator><creator>Chen, Yahua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</title><author>Shi, Liang ; Wang, Jie ; Liu, Binhao ; Nara, Kazuhide ; Lian, Chunlan ; Shen, Zhenguo ; Xia, Yan ; Chen, Yahua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-70183ba6559026d59df0cd76592ca6becd37d3eb5d2f9c4ff499ae73a26494a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological</topic><topic>Agriculture</topic><topic>Basidiomycota - physiology</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon Cycle</topic><topic>Carbon dioxide</topic><topic>carbon dioxide fixation</topic><topic>Carbon fixation</topic><topic>Cenococcum geophilum</topic><topic>Chlorophyll</topic><topic>Compensation</topic><topic>Competitiveness</topic><topic>Ecology</topic><topic>ectomycorrhizae</topic><topic>Ectomycorrhizas</topic><topic>Environment</topic><topic>Forestry</topic><topic>Fungi</topic><topic>Laccaria amethystea</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Microbiology</topic><topic>Moisture content</topic><topic>Mycorrhizae - physiology</topic><topic>mycorrhizal fungi</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Phosphorus</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Pine</topic><topic>Pine needles</topic><topic>Pinus - growth & development</topic><topic>Pinus - microbiology</topic><topic>Pinus - physiology</topic><topic>Pinus thunbergii</topic><topic>Pisolithus</topic><topic>Plant Sciences</topic><topic>Seedlings</topic><topic>Seedlings - growth & development</topic><topic>Seedlings - microbiology</topic><topic>Seedlings - physiology</topic><topic>shade</topic><topic>Survival</topic><topic>Symbionts</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Liu, Binhao</creatorcontrib><creatorcontrib>Nara, Kazuhide</creatorcontrib><creatorcontrib>Lian, Chunlan</creatorcontrib><creatorcontrib>Shen, Zhenguo</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Chen, Yahua</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mycorrhiza</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Liang</au><au>Wang, Jie</au><au>Liu, Binhao</au><au>Nara, Kazuhide</au><au>Lian, Chunlan</au><au>Shen, Zhenguo</au><au>Xia, Yan</au><au>Chen, Yahua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments</atitle><jtitle>Mycorrhiza</jtitle><stitle>Mycorrhiza</stitle><addtitle>Mycorrhiza</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>27</volume><issue>8</issue><spage>823</spage><epage>830</epage><pages>823-830</pages><issn>0940-6360</issn><eissn>1432-1890</eissn><abstract>We examined the effects of three ectomycorrhizal (ECM) symbionts on the growth and photosynthesis capacity of Japanese black pine (
Pinus thunbergii
) seedlings and estimated physiological and photosynthetic parameters such as the light compensation point (LCP), biomass, and phosphorus (Pi) concentration of
P. thunbergii
seedlings. Through this investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitiveness of
P. thunbergii
seedlings under low-light condition by reducing the LCP of seedlings. At a CO
2
concentration of 400 ppm, the LCP of seedlings with ECM inoculations was 40–70 μmol photons m
−2
s
−1
, significantly lower than that of non-mycorrhizal (NM) seedlings (200 μmol photons m
−2
s
−1
). In addition, photosynthetic carbon fixation (Pn) increased with light intensity and CO
2
level, and the Pn of ECM seedlings was significantly higher than that of NM seedlings;
Pisolithus
sp. (Pt)- and
Laccaria amethystea
(La)-mycorrhizal seedlings had significantly lower Pn than
Cenococcum geophilum
(Cg)-mycorrhizal seedlings. However, La-mycorrhizal seedlings exhibited the highest fresh weight, relative water content (RWC), and the lowest LCP in the mycorrhizal group. Concomitantly, ECM seedlings showed significantly increased chlorophyll content of needles and higher Pi concentrations compared to NM seedlings. Overall, ECM symbionts promoted growth and photosynthesis while reducing the LCP of
P. thunbergii
seedlings. These findings indicate that ECM fungi can enhance the survival and competitiveness of host seedlings under low light.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28840358</pmid><doi>10.1007/s00572-017-0795-7</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0940-6360 |
ispartof | Mycorrhiza, 2017-11, Vol.27 (8), p.823-830 |
issn | 0940-6360 1432-1890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5645441 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adaptation, Physiological Agriculture Basidiomycota - physiology biomass Biomedical and Life Sciences Carbon Cycle Carbon dioxide carbon dioxide fixation Carbon fixation Cenococcum geophilum Chlorophyll Compensation Competitiveness Ecology ectomycorrhizae Ectomycorrhizas Environment Forestry Fungi Laccaria amethystea Life Sciences Light Light intensity Luminous intensity Microbiology Moisture content Mycorrhizae - physiology mycorrhizal fungi Original Paper Parameter estimation Phosphorus Photons Photosynthesis Pine Pine needles Pinus - growth & development Pinus - microbiology Pinus - physiology Pinus thunbergii Pisolithus Plant Sciences Seedlings Seedlings - growth & development Seedlings - microbiology Seedlings - physiology shade Survival Symbionts Water content |
title | Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ectomycorrhizal%20fungi%20reduce%20the%20light%20compensation%20point%20and%20promote%20carbon%20fixation%20of%20Pinus%20thunbergii%20seedlings%20to%20adapt%20to%20shade%20environments&rft.jtitle=Mycorrhiza&rft.au=Shi,%20Liang&rft.date=2017-11-01&rft.volume=27&rft.issue=8&rft.spage=823&rft.epage=830&rft.pages=823-830&rft.issn=0940-6360&rft.eissn=1432-1890&rft_id=info:doi/10.1007/s00572-017-0795-7&rft_dat=%3Cproquest_pubme%3E1951917867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951917867&rft_id=info:pmid/28840358&rfr_iscdi=true |