Frequency-constrained robust principal component analysis: a sparse representation approach to segmentation of dynamic features in optical coherence tomography imaging

Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-10, Vol.25 (21), p.25819-25830
Hauptverfasser: McLean, James P, Ling, Yuye, Hendon, Christine P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25830
container_issue 21
container_start_page 25819
container_title Optics express
container_volume 25
creator McLean, James P
Ling, Yuye
Hendon, Christine P
description Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA (FC-RPCA), for selectively segmenting dynamic phenomena that exhibit spectra within a user-defined range of frequencies. The algorithm lacks subjective parameter tuning and demonstrates robust segmentation in datasets containing multiple motion sources and high amplitude noise. When tested on 17 ex-vivo, time lapse optical coherence tomography (OCT) B-scans of human ciliated epithelium, segmentation accuracies ranged between 91-99% and consistently out-performed traditional RPCA.
doi_str_mv 10.1364/OE.25.025819
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5644470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952529388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2299-4cea617b36f6fe3b717d5e2ab3f02f7696c673dcf20bbe70252bc3a08c2d2b273</originalsourceid><addsrcrecordid>eNpVUcuO1DAQjBCIfcCNM_KRAxn8SpxwQEKrWUBaaS5wtjpOJ2OU2MZOVsoX8ZuYnWW0nNxyVVe1qoriDaM7Jmr54bDf8WpHedWw9llxyWgrS0kb9fzJfFFcpfSTUiZVq14WF7ylknFZXRa_byP-WtGZrTTepSWCddiT6Ls1LSRE64wNMBHj5-AduoWAg2lLNn0kQFKAmJBEDBFTBmGx3hEIIXowR7J4knCcz4AfSL85mK0hA8Ky5iVi83dYrHnwOGLMp2BenP0YIRw3YmcYrRtfFS8GmBK-fnyvix-3--83X8u7w5dvN5_vSsN525bSINRMdaIe6gFFp5jqK-TQiYHyQdVtbWolejNw2nWocmq8MwJoY3jPO67EdfHppBvWbsbe5NsjTDoHMUPctAer_0ecPerR3-uqllIqmgXePQpEn4NNi55tMjhN4NCvSbO2yqataJpMfX-imuhTijicbRjVf7vVh73mlT51m-lvn552Jv8rU_wBhJymRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952529388</pqid></control><display><type>article</type><title>Frequency-constrained robust principal component analysis: a sparse representation approach to segmentation of dynamic features in optical coherence tomography imaging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McLean, James P ; Ling, Yuye ; Hendon, Christine P</creator><creatorcontrib>McLean, James P ; Ling, Yuye ; Hendon, Christine P</creatorcontrib><description>Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA (FC-RPCA), for selectively segmenting dynamic phenomena that exhibit spectra within a user-defined range of frequencies. The algorithm lacks subjective parameter tuning and demonstrates robust segmentation in datasets containing multiple motion sources and high amplitude noise. When tested on 17 ex-vivo, time lapse optical coherence tomography (OCT) B-scans of human ciliated epithelium, segmentation accuracies ranged between 91-99% and consistently out-performed traditional RPCA.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.25.025819</identifier><identifier>PMID: 29041245</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Cilia - physiology ; Epithelium - diagnostic imaging ; Humans ; Movement ; Principal Component Analysis ; Time Factors ; Tomography, Optical Coherence - methods ; Tomography, Optical Coherence - statistics &amp; numerical data ; Trachea - cytology ; Trachea - diagnostic imaging</subject><ispartof>Optics express, 2017-10, Vol.25 (21), p.25819-25830</ispartof><rights>2017 Optical Society of America 2017 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2299-4cea617b36f6fe3b717d5e2ab3f02f7696c673dcf20bbe70252bc3a08c2d2b273</citedby><cites>FETCH-LOGICAL-c2299-4cea617b36f6fe3b717d5e2ab3f02f7696c673dcf20bbe70252bc3a08c2d2b273</cites><orcidid>0000-0002-4628-7604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,865,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29041245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLean, James P</creatorcontrib><creatorcontrib>Ling, Yuye</creatorcontrib><creatorcontrib>Hendon, Christine P</creatorcontrib><title>Frequency-constrained robust principal component analysis: a sparse representation approach to segmentation of dynamic features in optical coherence tomography imaging</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA (FC-RPCA), for selectively segmenting dynamic phenomena that exhibit spectra within a user-defined range of frequencies. The algorithm lacks subjective parameter tuning and demonstrates robust segmentation in datasets containing multiple motion sources and high amplitude noise. When tested on 17 ex-vivo, time lapse optical coherence tomography (OCT) B-scans of human ciliated epithelium, segmentation accuracies ranged between 91-99% and consistently out-performed traditional RPCA.</description><subject>Algorithms</subject><subject>Cilia - physiology</subject><subject>Epithelium - diagnostic imaging</subject><subject>Humans</subject><subject>Movement</subject><subject>Principal Component Analysis</subject><subject>Time Factors</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Tomography, Optical Coherence - statistics &amp; numerical data</subject><subject>Trachea - cytology</subject><subject>Trachea - diagnostic imaging</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcuO1DAQjBCIfcCNM_KRAxn8SpxwQEKrWUBaaS5wtjpOJ2OU2MZOVsoX8ZuYnWW0nNxyVVe1qoriDaM7Jmr54bDf8WpHedWw9llxyWgrS0kb9fzJfFFcpfSTUiZVq14WF7ylknFZXRa_byP-WtGZrTTepSWCddiT6Ls1LSRE64wNMBHj5-AduoWAg2lLNn0kQFKAmJBEDBFTBmGx3hEIIXowR7J4knCcz4AfSL85mK0hA8Ky5iVi83dYrHnwOGLMp2BenP0YIRw3YmcYrRtfFS8GmBK-fnyvix-3--83X8u7w5dvN5_vSsN525bSINRMdaIe6gFFp5jqK-TQiYHyQdVtbWolejNw2nWocmq8MwJoY3jPO67EdfHppBvWbsbe5NsjTDoHMUPctAer_0ecPerR3-uqllIqmgXePQpEn4NNi55tMjhN4NCvSbO2yqataJpMfX-imuhTijicbRjVf7vVh73mlT51m-lvn552Jv8rU_wBhJymRg</recordid><startdate>20171016</startdate><enddate>20171016</enddate><creator>McLean, James P</creator><creator>Ling, Yuye</creator><creator>Hendon, Christine P</creator><general>Optical Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4628-7604</orcidid></search><sort><creationdate>20171016</creationdate><title>Frequency-constrained robust principal component analysis: a sparse representation approach to segmentation of dynamic features in optical coherence tomography imaging</title><author>McLean, James P ; Ling, Yuye ; Hendon, Christine P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2299-4cea617b36f6fe3b717d5e2ab3f02f7696c673dcf20bbe70252bc3a08c2d2b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cilia - physiology</topic><topic>Epithelium - diagnostic imaging</topic><topic>Humans</topic><topic>Movement</topic><topic>Principal Component Analysis</topic><topic>Time Factors</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Tomography, Optical Coherence - statistics &amp; numerical data</topic><topic>Trachea - cytology</topic><topic>Trachea - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLean, James P</creatorcontrib><creatorcontrib>Ling, Yuye</creatorcontrib><creatorcontrib>Hendon, Christine P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLean, James P</au><au>Ling, Yuye</au><au>Hendon, Christine P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-constrained robust principal component analysis: a sparse representation approach to segmentation of dynamic features in optical coherence tomography imaging</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2017-10-16</date><risdate>2017</risdate><volume>25</volume><issue>21</issue><spage>25819</spage><epage>25830</epage><pages>25819-25830</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA (FC-RPCA), for selectively segmenting dynamic phenomena that exhibit spectra within a user-defined range of frequencies. The algorithm lacks subjective parameter tuning and demonstrates robust segmentation in datasets containing multiple motion sources and high amplitude noise. When tested on 17 ex-vivo, time lapse optical coherence tomography (OCT) B-scans of human ciliated epithelium, segmentation accuracies ranged between 91-99% and consistently out-performed traditional RPCA.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>29041245</pmid><doi>10.1364/OE.25.025819</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4628-7604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2017-10, Vol.25 (21), p.25819-25830
issn 1094-4087
1094-4087
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5644470
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Cilia - physiology
Epithelium - diagnostic imaging
Humans
Movement
Principal Component Analysis
Time Factors
Tomography, Optical Coherence - methods
Tomography, Optical Coherence - statistics & numerical data
Trachea - cytology
Trachea - diagnostic imaging
title Frequency-constrained robust principal component analysis: a sparse representation approach to segmentation of dynamic features in optical coherence tomography imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-constrained%20robust%20principal%20component%20analysis:%20a%20sparse%20representation%20approach%20to%20segmentation%20of%20dynamic%20features%20in%20optical%20coherence%20tomography%20imaging&rft.jtitle=Optics%20express&rft.au=McLean,%20James%20P&rft.date=2017-10-16&rft.volume=25&rft.issue=21&rft.spage=25819&rft.epage=25830&rft.pages=25819-25830&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.25.025819&rft_dat=%3Cproquest_pubme%3E1952529388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952529388&rft_id=info:pmid/29041245&rfr_iscdi=true