Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material
Layered-layered composite oxides of the form xLi 2 MnO 3 ·(1−x) Li M O 2 ( M = Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode mat...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-10, Vol.7 (1), p.1-8, Article 13196 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific reports |
container_volume | 7 |
creator | Kaewmala, Songyoot Chantrasuwan, Patcharapohn Wiriya, Narinthron Srilomsak, Sutham Limphirat, Wanwisa Limthongkul, Pimpa Meethong, Nonglak |
description | Layered-layered composite oxides of the form xLi
2
MnO
3
·(1−x) Li
M
O
2
(
M
= Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode materials of this class generally exhibit large capacity fade upon cycling and poor rate performance caused by structural transformations. Since electrochemical properties of the cathode materials are strongly dependent on their structural characteristics, the roles of these components in 0.5Li
2
MnO
3
·0.5LiCoO
2
cathode material was the focus of this work. In this work, the influences of Li
2
MnO
3
domain size and current rate on electrochemical properties of 0.5Li
2
MnO
3
·0.5LiCoO
2
cathodes were studied. Experimental results obtained showed that a large domain size provided higher cycling stability. Furthermore, fast cycling rate was also found to help reduce possible structural changes from layered structure to spinel structure that takes place in continuous cycling. |
doi_str_mv | 10.1038/s41598-017-13740-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5643299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957859825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d95f7cc96f1fa715c5b817473e00b22bf2710b68d7fe842a59b3599d4c76ce983</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoNYbGn7B1wF3LiZNp-TyUaQi19w5W50HTLJmd6UmWRMZgTrD3PvLzPtvZQqmE0O5H0fcngQeknJFSW8uy6CSt01hKqGciVIw56hM0aEbBhn7PmT-RRdlnJL6pFMC6pfoFOmK0IIdYZ-bgP7HHcc-zTZEHEJd4Bt9NitOUNccLYLYA8zRA_RAU4RL3vAMIJbcnJ7mIKzI55zmiEvAQpOAyZX8sj9_eth3qQdw84u--QBTxWZgx0v0MlgxwKXx_scfX3_7svmY7Pdffi0ebttnJB0abyWg3JOtwMdrKLSyb6jSigOhPSM9QNTlPRt59UAnWBW6p5Lrb1wqnWgO36O3hy489pP4F1dK9vRzDlMNv8wyQbz90sMe3OTvhvZCs60roDXR0BO31Yoi5lCcTCONkJai6Fasiql1aJGX_0TvU1rjnW9-5TqqjMma4odUi6nUjIMj5-hxNzrNQe9puo1D3oNqyV-KJUajjeQn6D_3_oD0nOmvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957859825</pqid></control><display><type>article</type><title>Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kaewmala, Songyoot ; Chantrasuwan, Patcharapohn ; Wiriya, Narinthron ; Srilomsak, Sutham ; Limphirat, Wanwisa ; Limthongkul, Pimpa ; Meethong, Nonglak</creator><creatorcontrib>Kaewmala, Songyoot ; Chantrasuwan, Patcharapohn ; Wiriya, Narinthron ; Srilomsak, Sutham ; Limphirat, Wanwisa ; Limthongkul, Pimpa ; Meethong, Nonglak</creatorcontrib><description>Layered-layered composite oxides of the form xLi
2
MnO
3
·(1−x) Li
M
O
2
(
M
= Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode materials of this class generally exhibit large capacity fade upon cycling and poor rate performance caused by structural transformations. Since electrochemical properties of the cathode materials are strongly dependent on their structural characteristics, the roles of these components in 0.5Li
2
MnO
3
·0.5LiCoO
2
cathode material was the focus of this work. In this work, the influences of Li
2
MnO
3
domain size and current rate on electrochemical properties of 0.5Li
2
MnO
3
·0.5LiCoO
2
cathodes were studied. Experimental results obtained showed that a large domain size provided higher cycling stability. Furthermore, fast cycling rate was also found to help reduce possible structural changes from layered structure to spinel structure that takes place in continuous cycling.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-13740-2</identifier><identifier>PMID: 29038447</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/4077/4079/891 ; Batteries ; Cathodes ; Composite materials ; Electrochemistry ; Humanities and Social Sciences ; Lithium ; multidisciplinary ; Oxides ; Science ; Science (multidisciplinary) ; Specific capacity</subject><ispartof>Scientific reports, 2017-10, Vol.7 (1), p.1-8, Article 13196</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d95f7cc96f1fa715c5b817473e00b22bf2710b68d7fe842a59b3599d4c76ce983</citedby><cites>FETCH-LOGICAL-c451t-d95f7cc96f1fa715c5b817473e00b22bf2710b68d7fe842a59b3599d4c76ce983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643299/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643299/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids></links><search><creatorcontrib>Kaewmala, Songyoot</creatorcontrib><creatorcontrib>Chantrasuwan, Patcharapohn</creatorcontrib><creatorcontrib>Wiriya, Narinthron</creatorcontrib><creatorcontrib>Srilomsak, Sutham</creatorcontrib><creatorcontrib>Limphirat, Wanwisa</creatorcontrib><creatorcontrib>Limthongkul, Pimpa</creatorcontrib><creatorcontrib>Meethong, Nonglak</creatorcontrib><title>Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Layered-layered composite oxides of the form xLi
2
MnO
3
·(1−x) Li
M
O
2
(
M
= Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode materials of this class generally exhibit large capacity fade upon cycling and poor rate performance caused by structural transformations. Since electrochemical properties of the cathode materials are strongly dependent on their structural characteristics, the roles of these components in 0.5Li
2
MnO
3
·0.5LiCoO
2
cathode material was the focus of this work. In this work, the influences of Li
2
MnO
3
domain size and current rate on electrochemical properties of 0.5Li
2
MnO
3
·0.5LiCoO
2
cathodes were studied. Experimental results obtained showed that a large domain size provided higher cycling stability. Furthermore, fast cycling rate was also found to help reduce possible structural changes from layered structure to spinel structure that takes place in continuous cycling.</description><subject>639/301/299/891</subject><subject>639/4077/4079/891</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Composite materials</subject><subject>Electrochemistry</subject><subject>Humanities and Social Sciences</subject><subject>Lithium</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Specific capacity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhoNYbGn7B1wF3LiZNp-TyUaQi19w5W50HTLJmd6UmWRMZgTrD3PvLzPtvZQqmE0O5H0fcngQeknJFSW8uy6CSt01hKqGciVIw56hM0aEbBhn7PmT-RRdlnJL6pFMC6pfoFOmK0IIdYZ-bgP7HHcc-zTZEHEJd4Bt9NitOUNccLYLYA8zRA_RAU4RL3vAMIJbcnJ7mIKzI55zmiEvAQpOAyZX8sj9_eth3qQdw84u--QBTxWZgx0v0MlgxwKXx_scfX3_7svmY7Pdffi0ebttnJB0abyWg3JOtwMdrKLSyb6jSigOhPSM9QNTlPRt59UAnWBW6p5Lrb1wqnWgO36O3hy489pP4F1dK9vRzDlMNv8wyQbz90sMe3OTvhvZCs60roDXR0BO31Yoi5lCcTCONkJai6Fasiql1aJGX_0TvU1rjnW9-5TqqjMma4odUi6nUjIMj5-hxNzrNQe9puo1D3oNqyV-KJUajjeQn6D_3_oD0nOmvg</recordid><startdate>20171016</startdate><enddate>20171016</enddate><creator>Kaewmala, Songyoot</creator><creator>Chantrasuwan, Patcharapohn</creator><creator>Wiriya, Narinthron</creator><creator>Srilomsak, Sutham</creator><creator>Limphirat, Wanwisa</creator><creator>Limthongkul, Pimpa</creator><creator>Meethong, Nonglak</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171016</creationdate><title>Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material</title><author>Kaewmala, Songyoot ; Chantrasuwan, Patcharapohn ; Wiriya, Narinthron ; Srilomsak, Sutham ; Limphirat, Wanwisa ; Limthongkul, Pimpa ; Meethong, Nonglak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d95f7cc96f1fa715c5b817473e00b22bf2710b68d7fe842a59b3599d4c76ce983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/299/891</topic><topic>639/4077/4079/891</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Composite materials</topic><topic>Electrochemistry</topic><topic>Humanities and Social Sciences</topic><topic>Lithium</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Specific capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaewmala, Songyoot</creatorcontrib><creatorcontrib>Chantrasuwan, Patcharapohn</creatorcontrib><creatorcontrib>Wiriya, Narinthron</creatorcontrib><creatorcontrib>Srilomsak, Sutham</creatorcontrib><creatorcontrib>Limphirat, Wanwisa</creatorcontrib><creatorcontrib>Limthongkul, Pimpa</creatorcontrib><creatorcontrib>Meethong, Nonglak</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaewmala, Songyoot</au><au>Chantrasuwan, Patcharapohn</au><au>Wiriya, Narinthron</au><au>Srilomsak, Sutham</au><au>Limphirat, Wanwisa</au><au>Limthongkul, Pimpa</au><au>Meethong, Nonglak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2017-10-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>13196</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Layered-layered composite oxides of the form xLi
2
MnO
3
·(1−x) Li
M
O
2
(
M
= Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode materials of this class generally exhibit large capacity fade upon cycling and poor rate performance caused by structural transformations. Since electrochemical properties of the cathode materials are strongly dependent on their structural characteristics, the roles of these components in 0.5Li
2
MnO
3
·0.5LiCoO
2
cathode material was the focus of this work. In this work, the influences of Li
2
MnO
3
domain size and current rate on electrochemical properties of 0.5Li
2
MnO
3
·0.5LiCoO
2
cathodes were studied. Experimental results obtained showed that a large domain size provided higher cycling stability. Furthermore, fast cycling rate was also found to help reduce possible structural changes from layered structure to spinel structure that takes place in continuous cycling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29038447</pmid><doi>10.1038/s41598-017-13740-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-10, Vol.7 (1), p.1-8, Article 13196 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5643299 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/301/299/891 639/4077/4079/891 Batteries Cathodes Composite materials Electrochemistry Humanities and Social Sciences Lithium multidisciplinary Oxides Science Science (multidisciplinary) Specific capacity |
title | Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li2MnO3%20domain%20size%20and%20current%20rate%20dependence%20on%20the%20electrochemical%20properties%20of%200.5Li2MnO3%C2%B70.5LiCoO2%20cathode%20material&rft.jtitle=Scientific%20reports&rft.au=Kaewmala,%20Songyoot&rft.date=2017-10-16&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=13196&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-13740-2&rft_dat=%3Cproquest_pubme%3E1957859825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957859825&rft_id=info:pmid/29038447&rfr_iscdi=true |